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Executive Summary

The goal of this deliverable was to build prostate cancer–specific Gene Regulatory Networks
(GRNs) by integrating patient data from different cohorts. The resulting networks constitute
graphs listing potential regulatory interactions related to prostate cancer onset and progres-
sion. The GRNs were built starting from RNASeq measurements obtained from a hetero-
geneous set of patient biopsies corresponding to different levels of disease aggressiveness.
We applied a consensus strategy to integrate results obtained from different methods using
HIPSTER (HIgh Performance SysTEms biology network Recostruction), the framework im-
plemented in the context of D4.1. In order to gain biological insights and better understand
the regulatory nature of the interactions, we enriched the consensus networks with informa-
tion about known transcription factors and identified potential transcription factor candidates.

After a revision request the deliverable was updated integrating more detailed information
about the data used, network inference methods considered and results from preliminary
work conducted by BCM in T1.1.
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Chapter 1

Introduction

Recent advances in high–throughput biological measurement and sequencing techniques
have paved the way for large–scale data analysis and building computational networks that
elucidate biological interactions such as gene–gene and protein–protein interactions (PPI),
metabolic, signaling and transcription–regulatory networks [Barabasi and Oltvai, 2004]. Among
these networks gene regulatory networks (GRNs) are particularly important as they describe
how cells regulate expression of genes which in turn control production of proteins that reg-
ulate cell function. GRNs can provide us with cues about pathways that affect abnormalities
and diseases such as cancer. These pathways can lead to critical information about disease
progression and be used for drug target discovery and therapeutic interventions. As such,
developing computational methods that can reconstruct gene regulatory networks can pro-
vide a wealth of information and tools for cancer diagnosis and treatment [Omranian et al.,
2016, Kelemen et al., 2008].

In computational models, gene regulatory networks are often presented as nodes connected
with edges, where nodes represent individual genes and the edges provide information
about the intensity of the regulatory interaction or even the direction of the regulatory effects.
Various network types are used to model GRNs such as: boolean networks, relevance net-
works, Bayesian networks and differential equation models [Kelemen et al., 2008, Chai et al.,
2014]. Boolean networks assume each gene is either “on” or “off” and as such are simple
and offer only a qualitative representation of the system. Relevance networks are built based
on pairwise distances or similarities between gene pairs. Various measures of similarity or
dissimilarity may be used to determine whether a strong enough interaction exists between
each pair of genes. Pairwise similarities are often filtered based on a threshold to determine
whether an edge between the two nodes should exist. One such network was built by Algo-
rithm for the Reconstruction of Accurate Cellular Networks (ARACNe) [Margolin et al., 2006]
which determines interaction between genes based on mutual information between gene
pairs. Relevance networks are simple to build and unlike Boolean networks provide quan-
titative measure of gene co–expression. Simplicity renders them suitable for building large
networks. Relevance networks, however, cannot explain the dynamic behavior of the net-
work as they do not take into account time variation of parameters. Bayesian networks are
built from determining conditional probability distributions of genes in the network. They are
suitable for GRN modeling as they take into account the stochastic nature of gene expres-
sion naturally. They are however unsuitable for building large networks due to the amount of
computation required to determine all conditional probabilities. Bayesian networks are also
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static and do not take into account the dynamics of a network. Differential equation networks
can be used to obtain a deterministic quantitative and dynamic model of the system. Differ-
ential equation inference of networks enables inclusion of chemical reaction kinetics in the
model [Kelemen et al., 2008], but at the price of estimating a large amount of parameters
and the need of time series data.

Wisdom of crowds, namely network inference based on a community of inference methods
rather than individual methods, has been shown to outperform individual inference tech-
niques [Marbach et al., 2012]. In line with the wisdom of crowds paradigm we have devel-
oped the HIPSTER (HIgh Performance SysTEms biology network Reconstruction) frame-
work in the context of deliverable D4.1 to estimate PPI networks. HIPSTER constructs
a relevance–based regulatory network by means of consensus among a community of
previously–established and reputable network inference methods namely: Pearson correla-
tion, Spearman correlation, ARACNe [Margolin et al., 2006], Glasso [Friedman et al., 2008],
JRF [Petralia et al., 2016] and FunChisq [Zhang and Song, 2013]. In this work we used
HIPSTER to infer networks from transciptomic data where in comparison to the estimation
of PPI a much larger number of genes was used. A Detailed description of HIPSTER can be
found in Section 3.1.

In the current deliverable, after presenting preliminary results obtained in initial phases of
T1.1 (Chapter 2), RNASeq datasets from two different cohorts of prostate cancer patients
are analyzed using our previously–devised HIPSTER method, and the corresponding GRNs
for each dataset are constructed and compared. Furthermore, using each dataset, prostate
cancer–specific pathway GRNs are inferred based on select genes extracted from reported
pathways in the literature. The resulting GRNs, obtained using HIPSTER, are described
as undirected graphs. To overcome the lack of directionality the networks are contrasted
and compared by means of quantitative metrics and studied using prior knowledge of tran-
scription factors from literature focusing on centrality measures, where potential regulatory
candidates are selected by examining most central nodes. Details of the aforementioned
analyses are presented in Chapters 3 and 4.
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Chapter 2

Preliminary results

The work presented in the current deliverable is based on preliminary work developed in T1.1
by BCM. BCM performed an extensive application of different network inference methods to
build a prostate–specifc GRN. The data used to build the prostate regulatory networks are
two prostrate adenocarcinoma cohorts from TCGA (The Cancer Genome Atlas) and MSKCC
(Memorial Sloan Kettering Cancer Center), here reported in Table 2.1.

TCGA-PRAD MSKCC-PRAD
data-type RNA profiles RNA profiles
number of samples 550 218

Table 2.1: Data used for preliminary results in T1.1 and D1.1

Only datasets with over 100 samples accommodate for the prerequisites of some of the
analysis methods. Moreover, there was little commonality between predicted targets across
datasets, suggesting that the addition of smaller datasets will introduce more noise than
benefit.

Name Based on Sparsity
ARACNe Mutual information DPI
MARINa Sequence analysis and

delta mutual information
DPI

Hermes Conditional mutual informa-
tion

Permutation testing

DME Sequence analysis Log–likelihood
OmniMiner Integration of ARACNe and

DME
DPI and permutation testing

LongHorn Sequence analysis and dis-
tance correlation

Permutation testing

Cupid Conditional mutual informa-
tion

Brown’s method

Table 2.2: Inference methods used in preliminary analysis to reverse engineer prostate-cancer spe-
cific regulatory networks.
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BCM used multiple methods to reverse engineer prostate–cancer specific regulatory net-
works (all methods used are reported in Table 2.2). BCM designed Cupid [Chiu et al., ]
and LongHorn. Specifically LongHorn was used to improve both transcriptional and post-
transcriptional regulatory interactions (more details can be found in the appendix attached
to the deliverable appendix longhorn.pdf ). All the methodologies generate interaction lists
for each analyzed cohort. Not all of the methods were directly applicable in the conse-
quent analysis performed in D1.1. For that reason sequence–analysis–based methods were
excluded from the following analysis. Moreover, the combination of dataset analyses with
these methods produced spurious results, with little commonality between predicted targets
across datasets. Consequently, from the original list of proposed methods contained in T1.1
description, only ARACNe was considered for D1.1 through its integration in HIPSTER (de-
tails in Chapter 3). Networks generated in this preliminary analysis phase are available at
the following link https://bcm.box.com/s/evljbwn7voaf25b04lyz42egbw3dp1av.
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Chapter 3

Network inference from RNASeq data

Deciphering regulatory interactions from molecular data plays a key role in understanding
cellular processes in complex diseases such as cancer. Thourough analysis of gene ex-
pression data, such as RNASeq, is crucial in studying regulatory processes that occur dur-
ing disease progression since it offers a direct measure of the transcription efficiency for
each gene. As previously mentioned, in this work network inference methods are applied to
transcripts expression data in prostate cancer. Building GRNs using RNASeq data extracted
from prostate cancer patients’ tumor samples may reveal novel unknown relationships or
regulatory effects that are relevant or critical in cancer growth and development.

3.1 HIPSTER Framework

To infer regulatory interactions from RNASeq data extracted from prostate cancer patient
biopsies HIPSTER (HIgh Performance SysTEms biology network Reconstruction) was used.
HIPSTER is an inference framework developed in the context of deliverable D4.1. A schematic
representation of the framework is given in Figure 3.1.

The HIPSTER framework builds an interaction network using a combination of different data
sources:

• Unstructured text from publications or text documents in general using a novel totally
unsupervised method developed in D4.1 called INtERAcT

• Public databases using OmniPath1 [Trei et al., 2016] (a database including interactions
from CancerCellMap, SPIKE, LMPID, DIP,HPRD, PDZBase, dbPTM, Signor, Macrophage,
ELM, SignaLink3, NRF2ome, DEPOD, BioGRID, phosphoELM, MPPI, IntAct, Phos-
phoSite, HPRD-phos, CA1, DeathDomain, ARN)

• Molecular datasets using a methods consensus approach inspired by DREAM5 [Mar-
bach et al., 2012] (DREAM challenge on network inference for gene regulatory net-
works). HIPSTER generates an estimate for the network topology from the datasets,

1http://omnipathdb.org/
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Figure 3.1: Schematic representation of HIPSTER framework - HIPSTER combines different data
sources in a robust interaction graph that exploits knowledge at different levels. Specifically it uses
data from publications (unstructured text in general), public databases and a consensus approach
based on different network inference methods.

and by combining results from single methods, constructing a unique weighted undi-
rected graph with interaction intensities (edge weights) ranging in [0, 1]. A list of the
considered methods is reported in Table 3.1.

Name Based on Sparsity
Pearson Correlation Multiple tests correction
Spearman Ranks correlation Multiple tests correction
Glasso Partial correlations L1 penalization
Aracne Mutual information DPI
FunChisq Functional dependencies Multiple tests correction

Table 3.1: HIPSTER inference methods

In this deliverable only the consensus inference from the data was used to build a prostate–
specific GRN. This was done due to the specific focus of the current deliverable, which is to
reverse engineer the regulatory networks from molecular data.
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3.2 GRN inference using HIPSTER

HIPSTER was used to infer potential interactions from RNASeq data of two prostate cancer
cohorts:

• TCGA PRAD: a well characterized cohort extensively studied from TCGA consortium
[Abeshouse et al., 2015]. RNASeq data from biopsies of 498 patients at different
stages of the disease were used.

• ProCOC [Umbehr et al., 2008]: a cohort from University Hospital of Zürich. 105 sam-
ples at different stages of the disease from 39 patients.

HIPSTER was applied on both cohorts to infer potential regulatory interactions in two differ-
ent ways. First a high–throughput approach examining all quantified transcripts (i.e., genes)
for each cohort was used. The reconstruction of the two cohort–specific transcriptome–
wide GRN was the basis for analyzing the estimated topological properties of the estimated
networks (see Section 4.1).

Second, in a pathway–specific approach, the focus of analysis was on pathways relevant
in cancer. Annotated gene sets from MSigDB (Molecular Signatures Database) [Liberzon
et al., 2015] were used to infer pathway–specific GRNs. Pathway networks with similar
connectivity patterns in both cohorts were highlighted, enabling a more detailed study of
potential regulatory interactions involved in prostate cancer progression (see Section 4.2)
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Chapter 4

Results

This chapter encompasses the results and discussion for application of HIPSTER consensus
inference to datasets from TCGA PRAD and UZH ProCOC cohorts (reported in Table 4.1).
The ProCOC cohort RNASeq data that were used in this work are still unpublished. They
were obtained by running RNASeq experiments from multi–area biopsies from 39 patients.
A total of 105 samples with different tumor grades were considered. The main reasons to
focus on RNASeq and these two specific cohorts were the following:

• RNASeq measurements are suitable to infer gene regulatory networks because they
allow to quantify gene expression values and they are the de–facto standard for genome-
wide expression analysis.

• The study was limited to these two cohorts because they were extremely compara-
ble. The measurement and processing pipeline adopted in UZH was tailored to obtain
results comparable with TCGA PRAD.

First an analysis of the networks constructed from the transcriptomes of the two cohorts is
shown (see Section 4.1). The main focus of the section is to compare the two topologies
and to analyze common graph properties. In the second part, the emphasis is on a more
detailed analysis of pathways relevant to cancer (see Section 4.2). Using the annotated
hallmark gene sets ([Liberzon et al., 2015]) it was possible to quantify known transcription
factors activity and identify novel potential regulatory elements.

TCGA-PRAD UZH ProCOC
data-type RNASeq RNASeq
number of samples 550 105

Table 4.1: Data considered for prostate-specific GRN reconstruction.

4.1 Complete Transcriptome Inference Results

HIPSTER was used to build prostate–specific GRNs for all the transcripts quantified using
RNASeq in the two cohorts studied.

PrECISE D1.1 Page 8 of 23



D1.1- Final regulatory network inference

The number of entities/nodes analyzed by HIPSTER for each cohort was significantly higher
than previous applications of HIPSTER (in D4.1 interactions were estimated for Protein-
Protein Interaction networks consisting of ∼3000 nodes). In the current report the baseline
for the network inference amounts to 14000 genes in each cohort. In this regime only a sub-
set of the available methods were suitable for performing a robust network estimation with
reasonable computational cost. The methods used for network inference (i.e.,estimation)
were two correlation–based techniques: Pearson correlations and Spearman correlations
(where the significant interactions were selected using 0kBenjamini–Hochberg correction
for multiple tests at confidence level p=0.05); and a mutual information–based method:
ARACNE [Margolin et al., 2006]. The consensus GRN for each cohort was estimated com-
bining interactions scores from single methods using the hard mean of the scaled ranked
interactions .

The hard mean is defined as the sum of the scaled ranked interaction scores from single
methods divided by the number of inference methods considered, regardless of the presence
of a predicted interaction for each of the single methods (adopted because it outperformed
other approaches for PPI estimation in D4.1, compared by looking at the Receiver Operating
Characteristic curves on synthetic data generated using GeneNetWeaver [Schaffter et al.,
2011]).

In Figure 4.1 the results obtained for the transcriptome reconstruction using molecular data
are reported. As demonstrated in the figure, a similar trend can be observed for distributions
of edge intensities (interaction scores) for two studied cohorts (see Figure 4.1a and Figure
4.1b). Both estimated networks exhibit a sensible drop in the intensities close to the thresh-
old value t used to filter out low confidence interactions. The threshold value was determined
such that it would preserve interactions that were predicted with high confidence by a single
method but received low scores from other inference methods (t=0.33), when applying the
consensus approach.

To study topological properties of the estimated networks, an analysis of the distribution of
node degrees and local clustering coefficient (also known as local transitivity) of the thresh-
olded networks was performed [Wasserman and Faust, 1994].

The degree distribution analysis was performed to determine whether the networks exhibit
a scale–free behaviour (as commonly observed in biological networks [Barabasi and Oltvai,
2004]). To check this property a power law fit was used (using package powerlaw [Alstott
et al., 2014]). Considering a power law for degree (k) distribution:

P (k) ∼ k−α (4.1)

where 2 ≤ α ≤ 3 is commonly observed for scale–free networks [Barabasi and Oltvai, 2004].
In Figure 4.1c and Figure 4.1d the degree distributions for the two estimated networks are
shown. The power law distribution fitted in both cases doesn’t fall in the range expected
for scale–free topologies (TCGA PRAD: α=4.47 and ProCOC: α=4.66) but is comparable
between the two estimates, exhibiting consistency in inferred network structure across the
two studied cohorts.

In addition, an analysis of the local clustering coefficient (also known as local transitivity)
was performed to determine whether the two networks demonstrate a hierarchical property.
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Since in the current work, weighted undirected networks were considered, the local cluster-
ing coefficient was calculated using the method described in [Barrat et al., 2004]. As stated in
[Barabasi and Oltvai, 2004], strongly hierarchical networks shows a reciprocal dependency
between the clustering coefficient (C) and the degree (k):

C(k) ∼ k−1 (4.2)

In Figure 4.1e and Figure 4.1f the log–log scale changes in the local clustering coefficients
for both graphs are presented. Neither of the plots demonstrate any indication of a hierar-
chical network structure. The increase in the clustering coefficient, especially in the network
estimated from TCGA data, suggests a network structure that packs highly and strongly con-
nected nodes together, while leaving out loosely connected ones. This behavior leads to the
rejection of the hypothesis of a hierarchical structure underlying both estimated networks.
While this is not in line with what is commonly observed for biological networks [Barabasi
and Oltvai, 2004], it still suggests the existence of highly connected gene sets that can be
interpreted as potential regulatory modules.

4.2 Hallmark Gene Sets GRNs analysis

In this section a detailed study of GRNs reconstructed for cancer–relevant pathways anno-
tated in MSigDB was conducted (see Table 4.2 for a list of the studied pathways). HIPSTER
was applied to both cohorts focusing on specific subsets of genes reported in MSigDB. In this
configuration (pathways containing a number of genes ranging from ∼ 30 to ∼ 200 genes)
all inference methods (see Section 4.2.1) implemented in the framework were able to run
and produce an estimate.

4.2.1 Identifying Consistent Pathway GRNs across Cohorts

To understand and identify disease-specific pathways, for each cohort and each pathway
(i.e., subset of genes in each pathway) the interactions were inferred using the HIPSTER
consensus approach. HIPSTER was able to produce estimates with all the six methods cur-
rently implemented in the framework (Pearson correlation, Spearman correlation, ARACNE
[Margolin et al., 2006], Glasso [Friedman et al., 2008], JRF [Petralia et al., 2016] and Fun-
Chisq [Zhang and Song, 2013]). The consensus approach was applied using the hard mean
of the scaled ranks, as described in Section 4.1, using a threshold t=0.16 to preserve high
confidence interaction from single methods.

To quantify the similarity of each pathway inferred from two different cohorts, the weighted
adjacency similarity between the two inferred pathway networks was computed. The adja-
cency similarity is the sum of equal entries in the adjacency matrix, given a vertex ordering
determined by the vertex labels. It counts the number of edges which have the same source
and target labels in both graphs. For undirected weighted graphs, it is defined as:

S(A1,A2) = E − d(A1,A2) (4.3)

PrECISE D1.1 Page 10 of 23
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where:

d(A1,A2) =
∑
i<j

|A(1)
ij − A

(2)
ij | (4.4)

is the distance between graphs, Ak with k ∈ {1, 2} are the weighted adjacency matrices of
the graphs considered, and E =

∑
i<j |A

(1)
ij | + |A

(2)
ij |. The weights were normalized using

S(A1,A2)/E.

Computing for each of the hallmark pathways the distances between the GRNs estimated
from TCGA PRAD and ProCOC RNASeq measurements identified stable topologies across
the two cohorts. In this way it was possible to find pathways and related GRNs that indicated
a disease–specific component independent of the cohorts considered, see Figure 4.2.

From this analysis two pathway GRNs emerged as consistently stable across the two studied
cohorts, both closely related to prostate cancer: genes related to TFNα Signaling Via NFKβ
([Srinivasan et al., 2010, Lessard et al., 2003]) and to Epithelial–Mesenchymal Transition
([Grant and Kyprianou, 2013, Imran Khan et al., 2015]).
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Table 4.2: Hallmark gene sets from MSigDB. Relevant pathways for cancer reported in MSigDB
are ranked according to the weighted adjacency similarity computed between GRN estimates ob-
tained using the HIPSTER consensus approach from TCGA PRAD and ProCOC RNASeq data.

Pathway Ranked Similarity

HALLMARK TNFA SIGNALING VIA NFKB 1
HALLMARK EPITHELIAL MESENCHYMAL TRANSITION 2
HALLMARK MYC TARGETS V2 3
HALLMARK INFLAMMATORY RESPONSE 4
HALLMARK INTERFERON ALPHA RESPONSE 5
HALLMARK IL6 JAK STAT3 SIGNALING 6
HALLMARK MYOGENESIS 7
HALLMARK ALLOGRAFT REJECTION 8
HALLMARK INTERFERON GAMMA RESPONSE 9
HALLMARK KRAS SIGNALING UP 10
HALLMARK TGF BETA SIGNALING 11
HALLMARK ANDROGEN RESPONSE 12
HALLMARK MYC TARGETS V1 13
HALLMARK UV RESPONSE DN 14
HALLMARK IL2 STAT5 SIGNALING 15
HALLMARK APICAL SURFACE 16
HALLMARK ESTROGEN RESPONSE LATE 17
HALLMARK ESTROGEN RESPONSE EARLY 18
HALLMARK APICAL JUNCTION 19
HALLMARK CHOLESTEROL HOMEOSTASIS 20
HALLMARK P53 PATHWAY 21
HALLMARK ANGIOGENESIS 22
HALLMARK COMPLEMENT 23
HALLMARK APOPTOSIS 24
HALLMARK HYPOXIA 25
HALLMARK HEDGEHOG SIGNALING 26
HALLMARK PI3K AKT MTOR SIGNALING 27
HALLMARK G2M CHECKPOINT 28
HALLMARK MITOTIC SPINDLE 29
HALLMARK UNFOLDED PROTEIN RESPONSE 30
HALLMARK WNT BETA CATENIN SIGNALING 31
HALLMARK E2F TARGETS 32
HALLMARK NOTCH SIGNALING 33
HALLMARK XENOBIOTIC METABOLISM 34
HALLMARK PEROXISOME 35
HALLMARK ADIPOGENESIS 36
HALLMARK MTORC1 SIGNALING 37
HALLMARK FATTY ACID METABOLISM 38
HALLMARK UV RESPONSE UP 39
HALLMARK COAGULATION 40
HALLMARK GLYCOLYSIS 41
HALLMARK OXIDATIVE PHOSPHORYLATION 42
HALLMARK PROTEIN SECRETION 43
HALLMARK DNA REPAIR 44

Continued on next page
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HALLMARK REACTIVE OXIGEN SPECIES PATHWAY 45
HALLMARK BILE ACID METABOLISM 46
HALLMARK HEME METABOLISM 47
HALLMARK PANCREAS BETA CELLS 48
HALLMARK SPERMATOGENESIS 49
HALLMARK KRAS SIGNALING DN 50

4.2.2 Detailed Analysis of Consistent Pathways GRNs

A detailed analysis of the pathways that showed the greatest stability was performed. For
each pathway network, the estimates built using TCGA PRAD and ProCOC cohorts were
combined using HIPSTER consensus approach applying the hard mean of the scaled rank
(see Section 4.1). To selectively preserve interactions that were estimated with high confi-
dence in both cohorts ( i.e., the most stable interactions), a threshold t=0.9 was applied to
prune low intensity connections.

Since the main goal of the current work consisted of estimation of regulatory interactions, the
emphasis was on identifying potential prostate cancer–regulators. To find such candidates
a betweenness centrality metric [Freeman, 1977] for all the genes contained in the networks
was computed. Most central genes, with respect to this metric, should represent the main
actors in regulatory events given their high–intensity interactions and strong connectivity.

Betweenness centrality is defined as:

CB(v) =
∑

s 6=v 6=t∈V, s 6=t

σst(v)

σst
(4.5)

where σst is the number of shortest geodesic paths between s and t, and σst(v) is the number
of shortest geodesic paths between s and t passing through a v.

Transcripton Factors (TFs) from two different sources were identified and collected to enrich
the analysis. An exhaustive list of known TFs was obtained from TFcheckpoint 1 [Chawla
et al., 2013], while a list of prostate–specific TFs was extracted from two FANTOM5 2 [Lizio
et al., 2015] tissue–specific gene regulatory networks constructed using adult prostate tis-
sues and prostate cancer cell lines.

In Figures 4.3 and 4.4 the results for the two stable pathways identified in Section 4.2.1 are
reported, for TFNα Signaling Via NFKβ and Epithelial–Mesenchymal Transition respectively.

Figures 4.3a and 4.4a report centrality measures for the top 20 most central genes. In both
networks it was possible to identify a set of genes that showed a higher centrality measure
and that were not reported in the list of the TFs from TFcheckpoint and FANTOM5. In TFNα
Signaling Via NFKβ , three genes were identified: DUSP5, PLAUR and SOCS3. While in
Epithelial–Mesenchymal Transition two genes emerged as being more central: COL6A3 and

1http://www.tfcheckpoint.org/
2http://fantom.gsc.riken.jp/5/
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GEM. Both sets were investigated in more details in the following paragraphs to understand
if the identified genes represent valid prostate cancer–specific regulators candidates.

In Figures 4.3b and 4.4b the high confidence interaction GRNs estimated using HIPSTER
are presented in a graph, where it is evident how identified genes exhibit a central role in the
network structure.

TFNα Signaling Via NFKβ

Activation of NFKβ signaling has been strongly associated with the progression of prostate
cancer; however, the precise underlying mechanisms are not fully understood [Jin et al.,
2014, Zhang et al., 2009, Shukla et al., 2004]. NFKβ expression in prostate cancer cells
significantly increased AR mRNA and protein levels and AR transactivation activity [Zhang
et al., 2009].

Among known regulators in TFNα Signaling Via NFKβ such as CEBPB and ETS2 [Lizio
et al., 2015] (see Figure 4.3 yellow bars) other genes were found to be central in the inferred
network: DUSP5 (Dual Specificity Phosphatase 5) which has been shown to negatively reg-
ulate MAP kinases, which are associated with cellular proliferation [Cai et al., 2015], PLAUR
(Plasminogen Activator, Urokinase Receptor) for which elevated mRNA levels have been re-
ported in analysis of androgen independent prostate cancer [Creighton, 2007] and SOCS3
(Suppressor Of Cytokine Signaling 3), which is known to negatively regulate cytokine sig-
naling and is expressed in human prostate cancer [Krebs and Hilton, 2001, Bellezza et al.,
2006].

NFKβ and TNF signaling have shown to be of significant importance for prognostic, patient
stratification and potentielly therapeutics [Srinivasan et al., 2010, Lessard et al., 2003]

Epithelial–Mesenchymal Transition

While Epithelial-mesenchymal transition (EMT) plays an essential role in regeneration of
tissue and development, its activation has also been associated with cancer progression.
Especially in the context of prostate cancer EMT activation has been identified to drive the
progression to castrate-resistant tumor types [Grant and Kyprianou, 2013, Imran Khan et al.,
2015].

Through a molecular mechanism strongly related to EMT, cancer cells can invade neigh-
boring tissues. In our inferred network COL6A3 plays a dominant role. Among other extra-
cellular matrix molecules, collagen has been reported as a candidate that may initiate signals
that promote EMT [Shintani et al., 2008]. Collagen type VI α3 (COL6A3) encodes a protein
of the extracellular matrix [Zanussi et al., 1992]. In a study using RT-PCR of 18 prostate can-
cer patients, alternative splicing variants have been detected for nearly half of the metastatic
prostate cancer samples compared to normal tissue and localized prostate cancer [Thorsen
et al., 2008]. A better understanding of the detailed molecular mechanisms of EMT may help
identify new targets for prevention of metastasis [Shintani et al., 2008].

It has been suggested that GTP Binding Protein Overexpressed In Sceletal Muscle (GEM)
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could play a role as a regulat gory protein in receptor-mediated signal transduction [Maguire
et al., 1994]. In recent work it has been shown that intracellular signaling mechanisms
triggered by extracellular hormonal factors acting through (G protein)-coupled receptors can
mediate and sustain androgen-independent prostate cancer cell proliferation [Daaka, 2004].
While the signalling pathways are still to be resolved the G protein-dependent activation of
the Ras-to-mitogen-activated protein kinase pathway has emerged as a critical regulatory
event.

The consensus GRNs inferred for each pathway are attached to the deliverable in an archive
(hipster hallmark consensus.zip).

4.3 Final Remarks

Application of HIPSTER consensus approach to network inference from transcriptomic data
proved to be an effective way to identify genes with central and potentially regulatory roles
without using any prior knowledge on known transcription factors–targets associations. Us-
ing multiple cohorts and known cancer–specific gene sets to identify prostate–specific path-
way GRNs showed promising results that may be further improved by incorporating addi-
tional cohorts and employing data–driven identification of relevant gene sets.

The analysis presented in this work was focused on generating novel hypotheses on prostate
cancer–specific regulation processes and discovery of novel regulatory interactions, for this
reason no prior knowledge on existing interactions using HIPSTER framework was added in
favor of a fully data–driven approach.

GRN analysis using HIPSTER led to the discovery of candidate regulators that demonstrate
relevance in prostate cancer progression. The results reported in this work give rise to new
hypotheses for further validation in the context of prostate cancer research.
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Figure 4.1: HIPSTER inferred GRNs for TCGA PRAD (left) and ProCOC (right). Analysis of GRNs
obtained applying the HIPSTER consensus approach on the considered cohorts. Results for both
TCGA PRAD and ProCOC cohorts are reported respectively in left and right panels. The histograms
in Panel a and b represent distributions of the intensities for the edges predicted using HIPSTER.
The blue vertical line corresponds to the threshold imposed on the intensities for the analysis in the
following panels. A value for the threshold t=0.33 ensured that we report only interactions that were
predicted by at least one method with high confidence. In Panel c and d histograms with kernel density
estimations of the degree distributions are reported, together with a fitting of the power law to check
connectivity properties. In Panel e and f a scatter plot in log–log scale of the local clustering coefficient
versus the degree is shown, the points are in both cases fitted with a robust linear regression with
outlier de–weighting and confidence intervals at level 0.95 estimated using bootstrap.
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Figure 4.2: Similarity analysis of GRNs estimated with HIPSTER for the hallmark gene sets
between the considered cohorts. Pathways with high similarity between cohorts are expected to
contain a higher degree of prostate cancer–specific information compared to pathways with low simi-
larity where the cohort effects are influencing the network. The most similar cancer hallmark pathways
across cohorts are related to TFNα Signaling Via NFKβ (HALLMARK TNFA SIGNALING VIA NFKB)
and Epithelial–Mesenchymal Transition (HALLMARK EPITHELIAL MESENCHYMAL TRANSITION).
They are highlighted in light blue. A complete list of the pathways can be found in Table 4.2.
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TFNα Signaling Via NFKβ Pathway Analysis

D
U

S
P
5

P
LA

U
R

S
O

C
S
3

P
LA

U
B

C
L3

R
E
LB

C
E
B

P
B

C
S
F1

T
N

FA
IP

2
G

E
M

S
IK

1
T
N

FA
IP

3
IE

R
5

LI
F

FO
S
L2

R
H

O
B

G
FP

T
2

E
T
S
2

M
A

P
3
K

8
K

LF
1
0

Genes

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

B
e
tw

e
e
n
n
e
ss

Top 20 Central Genes

Potential Regulators

Genes

Known Transcription Factors

FANTOM5 Reported Regulators

(a)

(b)

Figure 4.3: HIPSTER inferred consensus GRN for TFNα Signaling Via NFKβ gene set. This fig-
ure describes the analysis of high confidence regulatory interactions (pruning edges using a threshold
t=0.9) for the most stable hallmark set, TFNα Signaling Via NFKβ . The GRN was obtained using
the consensus network estimated after merging the results from both TCGA PRAD and ProCOC co-
horts. In Panel a the first top 20 central genes, sorted using betweenness measure, are reported.
The legend shows the colors associated with the different genes based on their source. In Panel b a
graph reporting all the high confidence interactions is shown. Edge width is a function of the intensity
and node size depends on their betweenness. The colors used for the nodes and edges follow the
legend in Panel a.
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Epithelial–Mesenchymal Transition Pathway Analysis
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Figure 4.4: HIPSTER inferred consensus GRN for Epithelial–Mesenchymal Transition gene
set. This figure describes the analysis of high confidence regulatory interactions (pruning edges
using a threshold t=0.9) for the second most stable hallmark set, Epithelial–Mesenchymal Transition
. The GRN was obtained using the consensus network estimated after merging the results from
both TCGA PRAD and ProCOC cohorts. In Panel a the first top 20 central genes, sorted using
betweenness measure, are reported. The legend shows the colors associated with different genes
based on their source. No transcription factors reported in prostate–specific regulatory networks
from FANTOM5 were detected among the most central nodes. This suggests that disease–induced
deregulation is not properly captured by graphs generated from prostate healthy tissues and the
cancer cell lines used to build the two FANTOM5 networks considered. In Panel b a graph reporting
all the high confidence interactions is shown. Edge width is a function of the intensity and node size
depends on their betweenness. The colors used for the nodes and edges follow the legend in Panel
a.
PrECISE D1.1 Page 19 of 23



D1.1- Final regulatory network inference

Chapter 5

List of Abbreviations

GRN Gene Regulatory Network
HIPSTER HIgh Performance SysTEms biology network Reconstruction
TCGA The Cancer Genome Atlas
MSigDB Molecular Signatures Database
PPI Protein–Protein Interaction
TF Transcripton Factors
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