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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the 

information is fit for any particular purpose. The users thereof use the information at their sole risk and 

liability.  
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Executive Summary 

We set out to test our ability to infer mutations and their clonality using 10 castrate-resistant 
prostate cancer (CRPC) tumor biopsies. Each of these biopsies was profiled using an 
Illumina enrichment kit, an Agilent SureSelectXT, and an Ion Xpress Plus Fragment Library 
Kit that targets coding exons of ERG, TMPRSS2, AR, PTEN, and SPOP. Conclusions from 
studying these biopsies informed methodology for selecting additional tumors for profiling by 
exome sequencing, for predicting mutations from Ion Xpress captures and exome 
sequencing, and allowed us to devise criteria for estimating mutation cellularity (a necessary 
step for inferring clonality in WP1). Following these efforts we profiled two areas in each of 

39 proCOC patients, and 5 areas in each of 10 additional CRPC patients. These, together 

with profiles of over 40 additional prostate cancer patients will be used to infer phylogenies, 
test inferences, and produce prognostically predictive biomarkers for prostate cancer. 
Clonality inference is a building block for prognostic-biomarker inference in WP3, and tumor 
classification in WP4. 

Revision V2.0: Our original submission of D2.1 focused on the profiling and analysis of 10 
areas by whole-exome sequencing using two kits, and on an initial effort to study the capture 
of 5 known driver genes. This was our first effort to (1) test the two kits, (2) reconstruct 
phylogeny for CRPCs based on whole-exome sequencing, and (3) profile these tumors at 
ultra-deep coverage. This update includes the description of a new capture, which we 
decided to use when searching for additional candidate patients for profiling and analysis, 

and a clinical description about the profiling of 39 proCOC patients, and 5 areas in each of 

10 additional CRPC patients, which occurred following our initial efforts. Clinical data is 

given in Supplementary table 1. 

Revision V3.0: In this revision the supplementary tables for the current deliverable are made 
available at a public Box link. Details are reported in Chapter 6. 
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Chapter 1 CRPC DNA profiling 

Molecularly profiled tumor sections are depicted for Patient 3 in Figure 1. Each section was 
profiled using Illumina enrichment kit, Agilent SureSelectXT—both exome captures—and Ion 
Xpress Plus Fragment Library Kit that targets coding exons of ERG, TMPRSS2, AR, PTEN, 
and SPOP. Exome sequencing data was used to detect mutations, estimate their frequency, 
and predict copy number changes in exome-wide fashion. Analysis protocols are described 
below. 

 

 

Figure 1: Ten tumor areas were chosen for profiling by exome sequencing and an Ion Xpress Plus 
Fragment Library Kit. Areas were selected in an effort to maximize diversity, and, subsequently, 
information content for clonal inference across biopsies. 

 

1.1 Mutation calling 

Mutation calling followed protocols established by TCGA and ExAC.1,2 First reads were 
aligned to hg19 using BWA, then variants were called with GenomeAnalysisTK.  

 

1.1.1 Alignment and quality control  

Fastq files from exomes and capture were aligned to the human genome reference (hg19) 
using bwa on a per lane basis using the following command lines. Picard MarkDuplicates 
was used to mark likely PCR duplicate reads and indels were accounted for using GATK’s 
RealignerTargetCreator and a list of known indel sites. Using this interval list, local 
realignment was then performed by GATK IndelRealigner. The base quality scores were then 
recalibrated using GATK BaseRecalibrator and a list of known variant sites and recalculated 
using GATK PrintReads. 

Area 1 Area 2 Area 3 Area 4 Area 5

Area 6 Area 7 Area 8 Area 9 Area 10
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1.1.2 Variant calling 

GATK HaplotypeCaller algorithm was used to generate gVCFs and known sites were 
annotated with dbSNP135. Command lines were as follows. 

 

Predicted mutations—after excluding poor-quality mutations and those that appeared in 
fewer than three biopsies—were crossed with previously identified mutations in the COSMIC 
database. 119 COSMIC mutations were identified in 118 genes; see Table 1 below.  

For every mutation in Table 1, we estimated the frequency—proportion of reads covering the 
mutated positions—and the copy number using VarScan using default parameters and 
setting the maximum amplification to 8x.3 The result produced, for each mutation in each 
biopsy, (1) the number of reads supporting the reference sequence, (2) the number of reads 
supporting the alternate (somatic) sequence, and (3) the average copy number for the given 
position across all profiled cells. Comparing our copy number estimates suggested that 
mutations identified in our biopsies had greater genomic instability than what was observed 
for genes in TCGA prostate2 and breast4 carcinomas (PRAD and BRCA); see Figure 2. 

 

 

 

bwa aln hg19.fasta -q 5 -l 32 -k 2 -t $NSLOTS -o 1 -f $output.1.sai $input.1.fastq.gz 

bwa aln hg19.fasta -q 5 -l 32 -k 2 -t $NSLOTS -o 1 -f $output.2.sai $input.2.fastq.gz 

bwa aln hg19.fasta -q 5 -l 32 -k 2 -t $NSLOTS -o 1 -f $output.unpaired.sai 

$output.unpaired.fastq.gz 

bwa sampe -t $NSLOTS -T -P -f $output.aligned_bwa.sam hg19.fasta $output.1.sai $output.2.sai 

$input.1.fastq.gz $input.2.fastq.gz 

java –jar GenomeAnalysisTK.jar -T HaplotypeCaller --

disable_auto_index_creation_and_locking_when_reading_rods -R hg19.fasta -o $output.vcf.gz -

I $input.bam -L $input.intervals --minPruning 3 --maxNumHaplotypesInPopulation 200 -ERC 

GVCF   --max_alternate_alleles 3 -variant_index_parameter 128000 -variant_index_type LINEAR  

-contamination 0.0  

 
java –jar GenomeAnalysisTK.jar -T CombineGVCFs  

-disable_auto_index_creation_and_locking_when_reading_rods -R hg19.fasta -o $output.vcf.gz 

-V gvcf.list --sample_rename_mapping_file rename_alias_file.txt 

 

 

java –jar GenomeAnalysisTK.jar -T GenotypeGVCFs --

disable_auto_index_creation_and_locking_when_reading_rods -R hg19.fasta -o 

$output.unfiltered.vcf.gz -D hg19.dbsnp.vcf -L Input.intervals  -V all_combined_gvcfs.list 

 

java –jar GenomeAnalysisTK.jar -T VariantRecalibrator --

disable_auto_index_creation_and_locking_when_reading_rods -R hg19.fasta -input 

$input.sites_only.unfiltered.vcf.gz --num_threads 2 -recalFile $output.snps.recal  

-tranchesFile $output.snps.tranches -allPoly -tranche 100.0 -tranche 99.95 -tranche 99.9 -

tranche 99.8 -tranche 99.6 -tranche 99.5 -tranche 99.4 -tranche 99.3 -tranche 99.0 -tranche 

98.0 -tranche 97.0 -tranche 90.0 -an QD -an MQRankSum -an ReadPosRankSum -an FS -an MQ -an 

InbreedingCoeff -resource:hapmap,known=false,training=true,truth=true,prior=15 

hapmap_3.3.b37.vcf.gz -resource:omni,known=false,training=true,truth=true,prior=12 

1000G_omni2.5.b37.vcf.gz -resource:1000G,known=false,training=true,truth=false,prior=10 

1000G_phase1.snps.high_confidence.b37.vcf.gz  

-resource:dbsnp137,known=false,training=false,truth=false,prior=7 dbsnp_138.b37.vcf.gz  

-resource:dbsnp129,known=true,training=false,truth=false,prior=3 

dbsnp_138.b37.excluding_sites_after_129.vcf.gz --maxGaussians 6 -mode SNP -rscriptFile 

$output.snps.recalibration_plots.rscript 
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Symbol Chromosome StartPosition Symbol Chromosome StartPosition Symbol Chromosome StartPosition 

ABCA13 chr7 48269459 SOGA1 chr20 35441382 NDRG2 chr14 21487315 

ABCC5 chr3 183679331 SPCS1 chr3 52741601 NEO1 chr15 73536675 

ABLIM2 chr4 8034546 SPEG chr2 2.2E+08 NKAIN3 chr8 63768953 

ADCK4 chr19 41198272 SPO11 chr20 55907112 PILRB chr7 99957210 

ANGPTL6 chr19 10206984 SRP14 chr15 40328471 POTEC chr18 14534886 

ANHX chr12 133796008 SRRM1 chr1 24998286 POTEM chr14 19990801 

AP1S2 chrX 15870503 SYDE2 chr1 85644102 POTEM chr14 20019383 

AQP6 chr12 50369285 SYNE1 chr6 1.53E+08 PRELP chr1 203453296 

ASH1L chr1 155447740 TAS2R30 chr12 11285909 PREPL chr2 44548425 

ATG2B chr14 96769617 TCEA3 chr1 23724019 PRMT8 chr12 3649768 

BANF1 chr11 65771358 TCHH chr1 1.52E+08 PRODH2 chr19 36293637 

CACNA1B chr9 140851169 TGM7 chr15 43585279 PROM1 chr4 16077540 

CASKIN2 chr17 73497272 TMBIM6 chr12 50151844 PTGDR chr14 52735190 

CD1E chr1 158325745 TMC3 chr15 81641692 PXDNL chr8 52361805 

CERK chr22 47087599 TMEFF2 chr2 1.93E+08 RANBP17 chr5 170626462 

COG3 chr13 46057444 TMEM161B chr5 87517667 RFX7 chr15 56394536 

CUBN chr10 16989293 TP73 chr1 3638549 RPL10L chr14 47120123 

DGKB chr7 14880879 TRAM1L1 chr4 1.18E+08 RPS6KA1 chr1 26870962 

DNMT3A chr2 25469200 TRAM2 chr6 52441810 RSPH10B2 chr7 6826763 

DPY19L4 chr8 95738579 TRAPPC9 chr8 1.41E+08 RYR1 chr19 39075660 

DYM chr18 46904950 TRMT2B chrX 1E+08 RYR2 chr1 237777756 

EDN3 chr20 57897621 TRUB2 chr9 1.31E+08 SAP130 chr2 128735644 

ENTHD1 chr22 40271433 TSPAN6 chrX 99887416 SEC22A chr3 122944283 

F5 chr1 169492462 TTBK1 chr6 43222945 SERHL2 chr22 42970288 

FBN1 chr15 48722747 TUBGCP3 chr13 1.13E+08 SERPINF2 chr17 1648406 

FGFR3 chr4 1806540 UBAC2 chr13 99970267 SH2B3 chr12 111856399 

FOXO3 chr6 108984667 UBE4B chr1 10132505 SH3TC1 chr4 8216010 

GOLGB1 chr3 121435808 UBR1 chr15 43282241 SIGLEC10 chr19 51919085 

GPT chr8 145732105 UNC5C chr4 96143426 SIGLEC5 chr19 52129411 

IDH1 chr2 209103715 USP49 chr6 41773507 SIPA1 chr11 65413699 

JAKMIP1 chr4 6050742 UTP18 chr17 49362592 SLC16A4 chr1 110932130 

KIRREL chr1 157963400 VIPR2 chr7 1.59E+08 SLC1A2 chr11 35287017 

LCMT2 chr15 43622103 WHAMM chr15 83499273 SLC26A4 chr7 107312534 

LOXHD1 chr18 44113308 ZBTB46 chr20 62421700 SLC6A9 chr1 44459219 

LRP2 chr2 169997124 ZHX1 chr8 1.24E+08 SLC9A9 chr3 142984890 

LRRC6 chr8 133622253 ZNF17 chr19 57929158 SMARCA5 chr4 144451500 

MACF1 chr1 39888527 ZNF24 chr18 32917874 SMPD4 chr2 130915668 

MON2 chr12 62887931 ZNF341 chr20 32358141 SNRNP200 chr2 96970517 

MS4A12 chr11 60269505 ZNF778 chr16 89294574 SNX18 chr5 53814224 

MYLK2 chr20 30414340 ZNF790 chr19 37310662 

   Table 1: 119 COSMIC mutations were in 118 genes. All mutations were identified in at least 3 of the 
ten biopsies from Patient 3 using both Agilent and Illumina exome sequencing kits. Coordinates refer 

to the hg19 assembly. 
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Figure 2: Distribution density plots of copy numbers of (A) all genes in profiled PRADs and BRCAs by 
TCGA and (B) all genes in profiled PRADs compared to all Table 1 mutations (CRPC). The results 
suggest that mutations in our biopsies take on a greater range of copy numbers: 

 

1.1.3 Capture 

Our initial capture, focusing on ERG, TMPRSS2, AR, PTEN, and SPOP failed to identify any 
mutations targeting the covered loci. Consequently, this assay did not inform about our ability 
to estimate clonality from capture data. Instead, the results suggested that captures are most 
useful to segregate patients and identify those that have and those that do not have common 
mutations. However, we needed a method to select patients for analysis. Consequently, we 
designed a 2nd capture. This is reported within D2.2. 

 

1.1.4 Conclusions 

Information about mutation copy numbers across biopsies suggested that copy number 
information is essential for accurate estimates of mutation cellularity. Mutation cellularity is 
required for identifying ancestral relations between clones, as depicted in Figure 3 and 
Figure 4. We therefore elected to include copy number analysis as a part of any future 
profiling. 
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Chapter 2 Estimating clonal composition and 

ancestral relations between clones  

Ancestral relations between clones are estimated based on clonal cellularity (Figure 3), and 
cellularity, in turn, is estimated from observed mutation frequencies in the sequencing 
experiment. Genomic instability can dramatically alter cellularity estimates, as shown in 
Figure 3C. Here, we propose an interpretation of observed frequencies derived from 3A,B 
when copy numbers are neutral (Figure 3C top) and when copy numbers are taken from a 
distribution matching that of CRPC Figure 2B.  

 

 

Figure 3: An anecdotal example for clonal phylogeny describing the evolution of a tumor. (A) Each 
node represent a subclone—a dominate cell type within the biopsy—and the edges describe ancestral 
relations between subclones. Subclones 2, 3 and 4 are decedent from subclone 1 and inherit any 
genetic alterations present in subclone 1. Mutations in Subclone 1 are likely to be tumor initiating, 
while mutations in subclones 4 and 5 have proliferative advantage. (B) Each biopsy is composed of 
subclones, and the proportion is termed cellularity; cellularity can refer to clones or mutations, where 
mutation cellularity is the proportion of tumor cells with the mutation. (C) Genomic instability, i.e. allele 
copy number, affects clone signatures and our ability to estimate mutation cellularity and frequency 
from sequencing data. 

 

 

The results suggest that failure to account for genomic instability can lead to large deviations 
in the accuracy of cellularity estimation. Errors in cellularity estimation can have a dramatic 
impact on our ability to estimate ancestral relations between clones and reverse engineer 
clonal phylogeny (Figure 4D,E). 
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Figure 4: An anecdotal example for clonal phylogeny describing the evolution of a tumor. (A) Each 
node represent a subclone—a dominate cell type within the biopsy—and the edges describe ancestral 
relations between subclones. Subclones 2 and 6 are decedent from subclone 1 and inherit any genetic 
alterations present in subclone 1. (B) The mutation cellularity matrix informs about the composition of 
each biopsy, as a sum of its composing subclones. (C) The mutation frequency matrix assigns 
expected observations of mutations associated with each subclone in each biopsy. (D) The mutation 
frequency matrix can be used to reverse engineer phylogeny from the root down, by noticing a 
conserved relationship between clones across biopsies. (E) Frequency estimation errors (in red) can 
inhibit reverse engineering efforts; in (D) mutation frequencies of subclone 4 were always smaller than 
those of subclone 3, but here this relation is lost. 
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Chapter 3 Modeling copy number variations for 

improved cellularity estimates  

Based on observations from our profiled biopsies, we produced the following model (Figure 
5). This model accounts for genomic variability at each allele, and makes no assumptions 
about copy numbers of the allele in mutated or un-mutated cells. Based on this model, we 
are redesigning methods for cellularity estimation and for reverse engineering both ancestral 
relations between clones and clonal phylogeny. 

 

Figure 5: For each mutation, in each biopsy (biopsy I to IV), we model the cellularity of the mutation  , 

and copy number of the allele in cells (tumor or wildtype) without the mutation (   ), and copy number 

of the wildtype and mutated allele (  
        

 , respectively) in cells with the mutation. 

 

3.1 Tests using synthetic data  

Our observations from TCGA tumor profiles and our CRPC data suggested that copy 
numbers of mutated alleles can vary widely, and that copy numbers of these alleles vary also 
in biopsies and tumors where the allele appears to be exclusively wild type. These results 
suggest that δi, δi

0  and δi
a can vary from one biopsy to another, and copy numbers in profiled 

tumors can range from 0 to over 200 per gene. To simulate our observations we generated 
simulated phylogenies, cellularity values, and copy number data. Copy number was taken 
from truncated normal distributions, with mean ranging from 1 to 4 and standard deviations 
ranging from ½ to 2. Some simulations produce narrower and some produce wider ranges of 
copy numbers. All were used to evaluate methods for estimating cellularity. Results from this 
evaluation will be reported as a part of Work package 1. 
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Figure 6: Copy number distributions in our CRPC data (black) and 8 additional synthetically generated 
that were used for simulations. 
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Chapter 4 Informing D2.2 and D2.3 

Based on our observations from the analysis of the 10 CRPC biopsies from Patient 3 we 
have devised methodology to identify patients using targeted capture. These patients, over 
40 in total were profiled using a targeted capture approach, and are reported on in D2.2. 
Here, we include profiles of 5 areas from 10 additional CRPC patients. Their identified 
mutations, including mutations that were found to be of specific interest, are given in 
Supplementary table 2. 
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Chapter 5 Summary and Conclusion 

We set out to test our ability to infer mutations and their clonality using 10 castrate-resistant 
prostate cancer (CRPC) tumor biopsies from one CRPC patient. Each of these biopsies was 
profiled using an Illumina enrichment kit, an Agilent SureSelectXT, and an Ion Xpress Plus 
Fragment Library Kit that targets coding exons of ERG, TMPRSS2, AR, PTEN, and SPOP. 
Conclusions from studying these biopsies informed methodology for selecting additional 
tumors for profiling by exome sequencing, for predicting mutations from captures and exome 
sequencing, and allowed us to devise criteria for estimating mutation cellularity (a necessary 
step for inferring clonality in WP1). Clonality inference is a building block for prognostic-
biomarker inference in WP3, and tumor classification in WP4. Following these efforts, we 
profiled a total of 39 patients with RNA-seq and whole-exome sequencing of 2 areas per 
patient. This data will be used to test predictive biomarkers and inferred phylogeny from a 
cohort of 25 patients, including 10 CRPC patients that we report on here, and 15 candidate 
patients that were selected for additional profiling (D2.2). 
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Chapter 6 Supplementary tables  

Supplementary Table 1. (Tab 1, 39 proCOC_patient_info) Clinical data on 39 proCOC 
patients that where profiled by RNA-seq and whole-exome sequencing of two areas. (Tab 2, 
10 CRPC patients) Clinical data on 10 additional CRPC patients that were profiled at 5 areas 
per patient. (Tab 3, Selected for more profiling) A sample of patients that were selected for 
additional ultra-deep profiling. 

Supplementary Table 2. Mutations identified in the 10 CRPC patients using targeted 
sequencing (36 genes). Including selected mutations that are candidates as predictive 
mutations (2nd tab). 

 

The supplementary tables are available and can be downloaded from the following link: 

https://bcm.app.box.com/s/oafhiuejoiodayuv74g9653nlkstrh70 

 

 

  

https://bcm.app.box.com/s/oafhiuejoiodayuv74g9653nlkstrh70
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Chapter 7 List of Abbreviations 

Abbreviation Explanation 

TCGA The Cancer Genome Atlas 

CRPC Castration-resistant Prostate Cancer 

PC Prostate Cancer 

DNA Deoxyribonucleic acid 
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