

D3.1
Computational pipeline to extract prior network

information at the proteomic level
Project number: 668858

Project acronym: PrECISE

Project title:
PrECISE: Personalized Engine for Cancer

Integrative Study and Evaluation

Start date of the project: 1st January, 2016

Duration: 36 months

Programme: H2020-PHC-02-2015

Deliverable type: Other

Deliverable reference number: PHC-668858 / D3.1/ V2.0

Work package contributing to the

deliverable:
WP 3

Due date: AUG 2016 – M08

Actual submission date: 10th November 2017

Responsible organisation: UKAACHEN

Editor: Luis Tobalina

Dissemination level: PU

Revision: V2.0

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 668858.

This work was supported (in part) by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 15.0324-2. The opinions expressed and arguments employed therein do not
necessarily reflect the official views of the Swiss Government.

Abstract:

This deliverable provides an overview of a

computational tool to extract and aggregate

prior information from different databases. It

focuses on how Omnipath and its

accompanying Python module Pypath can be

used to extract prior knowledge information

regarding protein interactions.

Keywords:
Omnipath, Pypath, signalling network

databases, protein interaction networks

D3.1 – Computational pipeline to extract prior network information

PrECISE D3.1 Page I

Editor

Luis Tobalina (UKAACHEN)

Contributors

Julio Saez-Rodriguez (UKAACHEN)

María Rodríguez Martínez (IBM)

Laurence Calzone (CI)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the

information is fit for any particular purpose. The users thereof use the information at their sole risk and

liability.

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page II

Executive Summary

Literature curated information on protein interactions is an extremely valuable resource for
researchers studying different biological questions. These resources can help in the
generation of hypothesis to explain experimental data and they provide support for the
building of computational models. However, the existing curated information is currently
distributed throughout a large number of online resources, making gathering and retrieving
this information in a consistent manner a non-trivial endeavour.

This document gives an overview of the Omnipath database and its accompanying Python
module Pypath. Omnipath gathers 55 resources, including 27 high-confidence literature
curated signaling resources, providing and easy, unified and convenient entry point to much
of the protein interaction knowledge available.

Overall, Omnipath and Pypath greatly facilitate the integration and extraction of biological
prior knowledge for analysis and model building, and they can be incorporated into wider
data processing pipelines. Pypath and Omnipath are available at http://omnipathdb.org.

As requested during the revision of the deliverable, we have revised the document attending
to the resources mentioned in Task 3.1. The introduction has been updated and a new table
listing the resources accessible using Omnipath has been included.

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page III

Contents

Executive Summary ... II

Contents ... III

List of Figures .. IV

List of Tables .. V

Chapter 1 Introduction ... 1

Chapter 2 Preliminaries ... 5

Chapter 3 Omnipath overview .. 6

3.1 ID conversion ... 6

3.2 Initializing the network .. 6

3.3 Node neighbourhood exploration ... 7

3.4 Pathway extraction ... 10

3.5 Protein complex extraction ... 12

3.6 Transcription Factors and surface receptors .. 14

3.7 Negatome database ... 15

Chapter 4 Prior-Knowledge Network building ... 17

Chapter 5 Summary and Conclusion ... 22

Chapter 6 Bibliography .. 23

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page IV

List of Figures

Figure 1. Network composed by all the nodes that participate in all the paths of length 4
between SPOP and FOXA1. .. 9

Figure 2. Network obtained by connecting all our genes of interest with one shortest path
between pairs of nodes (left) or with all possible shortest paths (right)..........................10

Figure 3. Network obtained by extracting all the interactions between the nodes annotated in
the 'Androgen receptor (AR)' of 'netpath', 'HH' of 'signalink' and 'Transforming growth
factor beta (TGF-beta) receptor' of 'netpath'. ..12

Figure 4. Extracted directed prior knowledge network for nodes of interest in Lescarbeau et
al 2014. ...21

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page V

List of Tables

Table 1. Databases integrated in Omnipath. For a description of each resource, see
http://omnipathdb.org/info. ... 4

Table 2. List of phosphoproteins measured in Lescarbeau et al. (2014) and additional nodes
considered of interest. The column stimulation takes the value 1, -1 or 0 depending on
whether the node was stimulated with an activating agent, inhibited or not perturbed,
respectively...18

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 1 of 23

Chapter 1 Introduction

Knowledge about protein interactions, backed up by experimental evidence, is a precious
resource in biological research. Researchers can come up with new plausible hypothesis that
can explain observed biological phenomena starting from this type of knowledge. In addition,
they can build sensible computational models grounded on evidence based interaction
networks, which can later give rise to new testable predictions. It also constitutes a
benchmark against which interaction prediction algorithms can be tested. This type of data
can be found currently in different online resources, however, gathering and retrieving
information from all of them in a consistent manner is anything but trivial.

With the aim to facilitate the access to this information, UKAACHEN started the development
of the Omnipath database (Türei et al. (2016)). During PrECISE, development in this
resource continued, polishing the integration of the different resources (i.e. detecting and
solving errors and adding new functionalities) and developing documentation showing some
of its possibilities. UKAACHEN introduced this resource to other partners and publicized it in
conferences. Interaction with other partners, like TUDA, IBM and CI, informed on some of the
desired functionalities and helped to test the software.

The Omnipath database gathers 55 different resources, including 27 high-confidence
literature curated signaling resources. In addition, it also provides access to other resources
containing annotation and other kinds of information. These include post-translational
modifications (PTMs), protein complexes, expression data, drug-target relationships or Gene
Ontology annotations. Among these resources we find STRING, Human Protein Reference
Database (HPRD), PhosphoSitePlus and ACSN. A list of resources is given in Table 1.

Furthermore, Omnipath comes with an accompanying Python module called Pypath. This
software enhances the Omnipath database with several expansion and analysis
functionalities. New interactions can be loaded and merged with the existing ones and
multiple graph analysis methods are available right away. These analysis methods range
from different network statistics calculations to shortest path searches. All of them facilitate
the search and extraction of subnetworks of interest by filtering nodes and edges according
to different criteria, speeding up this way the process of building and curating signaling
pathway models.

Although Omnipath and Pypath by themselves do not constitute a completely automated way
of getting a final biologically meaningful network starting from a list of proteins, they provide
the basis for a computational pipeline capable of doing so. In fact, there might be several
different ways of achieving that goal, and Omnipath and Pypath can give support to all of
them. Moreover, they also fit into a more traditional manual curation pipeline, easing the
process of information search and integration.

This document focuses on different practical use cases of Omnipath and Pypath. By using
prostate cancer as an example, we show how Omnipath and Pypath can help to answer
common questions around protein interactions and signaling networks. Overall, we establish
a computational pipeline for the extraction of prior knowledge information around protein
interactions.

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 2 of 23

Database Category Subcategory

ACSN Literature curated Reaction

AlzPathway Literature curated Pathway

ARN Literature curated Pathway

Ataxia High-throughput Interaction

Awan 2007 Literature curated Pathway

BioCarta Literature curated Pathway

BioGRID High-throughput Interaction

Ma'ayan 2005 Literature curated Pathway

CancerCellMap Literature curated Interaction

CARFMAP Literature curated Pathway

ConsensusPathDB Literature curated Pathway

CORUM Literature curated Complexes

CST Pathways Literature curated Pathway

Cui 2007 Literature curated Pathway

dbPTM Literature curated Ptm

DeathDomain Literature curated Pathway

DEPOD Literature curated Post-translational
modification

DIP Literature curated Interaction

DOMINO Literature curated Ptm

ELM Literature curated Post-translational
modification

Guide to
Pharmacology

Literature curated Pathway

HPRD Literature curated Post-translational
modification

HumanSignalingNet
work

Literature curated Pathway

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 3 of 23

Database Category Subcategory

HuPho High throughput and literature curated Post-translational
modification

InnateDB Literature curated Interaction

IntAct Literature curated and high-throughput Interaction

KEGG Literature curated Reaction network

Laudanna Combined Mixed

Li 2012 High-throughput Yeast 2 hybrid

Lit-BM-13 High-throughput Yeast 2 hybrid

LMPID Literature curated Post-translational
modification

Macrophage Literature curated Pathway

MatrixDB Literature curated Interaction

MINT Literature curated and high-throughput Interaction

MPPI Literature curated Interaction

NCI-PID Literature curated Reaction network

Negatome Literature curated Negative

NetPath Literature curated Reaction network

NRF2ome Literature curated Pathway

PANTHER Literature curated Reaction network

PathwayCommons Combined Interaction

PDZBase Literature curated Pathway

phospho.ELM Literature curated Ptm

PhosphoPoint Literature curated and prediction Post-translational
modification

PhosphoSite Literature curated and high-throughput Post-translational
modification

Reactome Literature curated Reaction network

SignaLink Literature curated Pathway

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 4 of 23

Database Category Subcategory

Signor Literature curated Pathway

SPIKE Literature curated Pathway

STRING High-throughput and prediction Interaction

TLR Literature curated Model

TRIP Literature curated Pathway

Vidal HI-III High-throughput Yeast 2 hybrid

WikiPathways Literature curated Reaction network

Zaman 2013 Literature curated Pathway

 Table 1. Databases integrated in Omnipath. For a description of each resource, see
http://omnipathdb.org/info.

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 5 of 23

Chapter 2 Preliminaries

Omnipath and Pypath are available at http://omnipathdb.org. The Omnipath database can be
accessed directly from the website through a REST style API, but it is also supported by the
Python package Pypath, which provides useful features for expansion and analysis of the
networks. This document will make extensive use of the Pypath Python module.

Omnipath can be installed with pip (a Python module that eases the process of installing
other packages) directly from the GitHub repository with the following command:

pip install git+git://github.com/saezlab/pypath.git

On some systems, however, it may be challenging to get it working due to the somewhat
complicated installation of other programs on which the Pypath module depends (for
example, the Cairo library on OS X systems). Omnipath’s website provides instructions on
how to install the software on different systems. However, unexpected issues may arise. In
those cases, users are encouraged to contact omnipath@googlegroups.com.

Omnipath and Pypath will be updated regularly. Previous releases of the package can be
found at http://pypath.omnipathdb.org/releases/archive/. Although in the future some
functions and features (or their syntax) may change, the general concepts and ideas
introduced in this document will remain valid. This document was developed with Pypath
version 0.3.12. To install a previous version of the software, download the tar.gz file from the
link mentioned above (e.g. pypath-0.3.12.tar.gz) and run the following command line from the
folder containing the file:

pip install pypath-0.3.12.tar.gz

mailto:omnipath@googlegroups.com
http://pypath.omnipathdb.org/releases/archive/

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 6 of 23

Chapter 3 Omnipath overview

The starting point for retrieving prior knowledge interaction information is usually a list of
proteins we are interested in. In the frame of the PrECISE project, there are 5 genes we are
specially interested in given that they are frequently altered in prostate cancer:

 PTEN

 FOXA1

 TP53

 SPOP

 AR

We are going to use these 5 genes to show how can we retrieve information around them
using Omnipath and Pypath.

3.1 ID conversion

Pypath comes with a mapping module that allows translating gene symbols to Uniprot
identifiers, among others. For example, to get the Uniprot IDs linked to our 5 genes of
interest we could use the following code:

from pypath import mapping

m = mapping.Mapper()

query_genes = set(['PTEN', 'FOXA1', 'TP53', 'SPOP', 'AR'])

for i_gene in query_genes:

 prot_id = m.map_name(i_gene, 'genesymbol', 'uniprot')[0]

 print("{}: {}".format(i_gene, prot_id))

The output that we obtain is as follows:

FOXA1: P55317

PTEN: P60484

SPOP: O43791

AR: P10275

TP53: P04637

The map_name() function returns a list just in case the identifier provided matches to more

than one queried identifier type. In most cases, the matching is one to one, like in this
example, but some genes may map to more than one protein or some protein may be coded
by more than one gene. Being Omnipath a protein interaction network, the main ID is the
Uniprot ID. When compiling the network, if we have information about interactions based on
gene identifiers and some of them map to more than one protein, interactions will be
assigned to all of them.

3.2 Initializing the network

The Omnipath database can be loaded in Python using the Pypath module.

load packages

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 7 of 23

import pypath

pa = pypath.main.PyPath()

pa.init_network()

By default, 27 curated resources will be loaded, but we can select specific resources to be
loaded or incorporate our own interaction lists.

We can execute the following command to remove interactions that are only supported by
papers reporting many interactions (which may be less curated than papers reporting just a
low number of interactions).

remove links reported in papers with more than 50 interactions (by

default)

pa.remove_htp()

The directed network can be constructed with the get_directed() function. This function

takes advantage of some references explicitly supporting one specific direction. For those
interactions without explicit directionality support, the interaction may be dropped (default
behavior), assigned an arbitrary direction or added with a pair of opposite directed edges.

pa.get_directed()

3.3 Node neighbourhood exploration

One of the first things we might want to know is what are the other proteins our proteins of
interest interact with.

query_nodes = set(['PTEN', 'FOXA1', 'TP53', 'SPOP', 'AR'])

for igene in query_nodes:

 # to query a node based on the value of an attribute we can use

the igraph find() method

 #prot = pa.graph.vs.find(label=i)['name']

 # if the attribute is the vertex label (genesymbol) we can use

pypath's genesymbol() function

 prot = pa.genesymbol(igene)['name']

 #neighbours_of_prot = pa.first_neighbours(prot)

 neighbours_of_prot = list(pa.gs_neighbors(igene).gs())

 print('{} ({}) has {} neighbours:'.format(igene, prot,

len(neighbours_of_prot)))

 if len(neighbours_of_prot)<10:

 print(neighbours_of_prot)

 else:

 print('(showing only 10 proteins)')

 print(neighbours_of_prot[0:10])

 print('---')

FOXA1 (P55317) has 4 neighbours:

['AR', 'TLE1', 'NFIX', 'NFIB']

PTEN (P60484) has 50 neighbours:

(showing only 10 proteins)

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 8 of 23

['AKT1', 'RELA', 'CDC42', 'EGR1', 'PPP1CA', 'CREB1', 'RAC1', 'ROCK1',

'CTNNB1', 'AR']

SPOP (O43791) has 4 neighbours:

['TRAF6', 'H2AFY', 'DAXX', 'CUL3']

AR (P10275) has 245 neighbours:

(showing only 10 proteins)

['AKT1', 'KDM3A', 'GTF2H3', 'GTF2H2', 'B3KNJ3', 'BAG1', 'AHR',

'CDK5', 'SVIL', 'IARS']

TP53 (P04637) has 271 neighbours:

(showing only 10 proteins)

['HDAC2', 'MAML1', 'CDK5', 'KDM1A', 'XPO1', 'BAD', 'DDX5', 'SIRT1',

'CCNA2', 'RELA']

Because these nodes are not necessarily connected between each other, we can find a way
to connect them supported by literature evidence in order to get a unique network. One of the
possibilities is to use the shortest paths between our genes of interest. For example, we may
try to connect SPOP to FOXA1, two of the nodes with the least number of neighbours:

find shortest path between SPOP and FOXA1

path = pa.graph.get_shortest_paths(pa.genesymbol('SPOP')['name'],

to=pa.genesymbol('FOXA1')['name'])

the result is returned as a list with a single element

path = path[0]

path_SPOP_to_FOXA1_length = len(path)-1

print('The path from SPOP to FOXA1 has {}

steps:'.format(path_SPOP_to_FOXA1_length))

print('\t' + ' --> '.join(pa.graph.vs[i]['label'] for i in path))

The path from SPOP to FOXA1 has 4 steps:

 SPOP --> TRAF6 --> AKT1 --> AR --> FOXA1

Of course, the shortest path that connects two nodes might not be unique.

find all paths between SPOP and FOXA1 (of length equal to the

shortest path length)

to find the index based on the value of an attribute we can use

igraph's select() function

#node_start = pa.graph.vs.select(label='SPOP').indices[0]

#node_end = pa.graph.vs.select(label='FOXA1').indices[0]

or, if the attribute is the gene symbol, we can use pypath's

genesymbol() function

node_start = pa.genesymbol('SPOP').index

node_end = pa.genesymbol('FOXA1').index

paths = pa.find_all_paths(start=node_start, end=node_end,

maxlen=path_SPOP_to_FOXA1_length)

print('Number of paths: {}'.format(len(paths)))

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 9 of 23

 :: Looking up all paths up to length 4: finished, 100.0%

Number of paths: 20

p = [item for sublist in paths for item in sublist]

p = set(p)

print('Number of nodes: {}'.format(len(p)))

Number of nodes: 25

In this case, we have 20 paths of length 4 that can connect SPOP and FOXA1. These paths
involve 25 nodes. We could decide to prioritize these paths based on the references
supporting each link involved in them, or by including experimental information (e.g.
proteomics or transcriptomics data) to hypothesize what paths are more likely than others,
for example.

We can extract and plot the network spanned by these nodes

import igraph # import igraph to use the plot function

Load the ipython display and image module

from IPython.display import Image

from IPython.display import display

extract graph expanded by the nodes included in the path

connection_graph = pa.graph.induced_subgraph(p)

plot2 = igraph.plot(connection_graph,

layout=connection_graph.layout_auto(), **visual_style)

plot2.save('connection_SPOP_FOXA1.png')

display(Image('connection_SPOP_FOXA1.png'))

Figure 1. Network composed by all the nodes that participate in all the paths of length 4 between
SPOP and FOXA1.

In summary, we can get a prior knowledge network that connects our nodes of interest
following this strategy and use other methods to refine it.

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 10 of 23

Figure 2. Network obtained by connecting all our genes of interest with one shortest path between
pairs of nodes (left) or with all possible shortest paths (right).

The accompanying document node_neighbourhood.html is a rendered IPython Notebook
that contains code and output corresponding to this analysis with some additional
observations.

3.4 Pathway extraction

Omnipath includes pathway annotations from different databases (Kegg, Signalink, Signor,
Netpath). We can have a look into what pathways are our genes of interest annotated to and
see if there is one connecting all of them.

pa.load_all_pathways()

for igene in query_nodes:

 print(igene)

 print(pa.gs(igene)['kegg_pathways'])

 print(pa.gs(igene)['signalink_pathways'])

 print(pa.gs(igene)['signor_pathways'])

 print(pa.gs(igene)['netpath_pathways'])

 print('---')

FOXA1

set([])

set([])

set([])

set([u'Androgen receptor (AR)'])

PTEN

set([u'Phosphatidylinositol signaling system', u'Sphingolipid

signaling pathway', u'Focal adhesion', u'Tight junction', u'Hepatitis

B', u'FoxO signaling pathway', u'p53 signaling pathway'])

set(['HH', 'TNF/Apoptosis', 'WNT', 'RTK', 'IIP'])

set([u'MTOR Signaling', u'Insulin Receptor'])

set([u'Androgen receptor (AR)'])

SPOP

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 11 of 23

set([])

set(['HH', 'JAK/STAT'])

set([])

set([])

AR

set([u'ErbB signaling pathway', u'Pathways in cancer', u'Hippo

signaling pathway'])

set(['IIP', 'autophagy'])

set([])

set([u'Androgen receptor (AR)', u'Interleukin-6 (IL-6)', u'

Transforming growth factor beta (TGF-beta) receptor ', u'Alpha6 Beta4

Integrin'])

TP53

set([u'HTLV-I infection', u'Melanoma', u'Bladder cancer',

u'Sphingolipid signaling pathway', u'Chronic myeloid leukemia',

u'Proteoglycans in cancer', u'Apoptosis', u'Neurotrophin signaling

pathway', u'Cell cycle', u'p53 signaling pathway', u'Viral

carcinogenesis', u'PI3K-Akt signaling pathway', u'Pathways in

cancer', u'Hepatitis B', u'Hepatitis C', u'Longevity regulating

pathway - mammal', u'Wnt signaling pathway', u'Prostate cancer',

u'Thyroid hormone signaling pathway', u'Glioma', u'MAPK signaling

pathway', u'Epstein-Barr virus infection', u'Measles'])

set(['Notch', 'TNF/Apoptosis', 'IIP', 'RTK', 'autophagy'])

set([u'Mitochondrial Control of Apoptosis', u'P38 Signaling',

u'AcuteMyeloidLeukemia'])

set([u' Transforming growth factor beta (TGF-beta) receptor '])

Taking a look at the list of pathways each node participates in, we can find a set that connect
all of them. For example, 'Androgen receptor (AR)' of 'netpath', 'HH' of 'signalink' and
'Transforming growth factor beta (TGF-beta) receptor' of 'netpath'. We can use this
information to extract another prior knowledge interaction network based on these pathways.

connector_pathways = {'signalink_pathways': set(['HH']),

 'netpath_pathways': set([u'Androgen receptor

(AR)',

 u' Transforming growth

factor beta (TGF-beta) receptor '])}

filter_func = []

filter_func.append(lambda vertex: 'HH' in

vertex['signalink_pathways'])

filter_func.append(lambda vertex: u'Androgen receptor (AR)' in

vertex['netpath_pathways'])

filter_func.append(lambda vertex: u' Transforming growth factor beta

(TGF-beta) receptor ' in vertex['netpath_pathways'])

connector_node_list = pa.graph.vs.select(lambda vertex: any(i(vertex)

for i in filter_func))

connector_subgraph = pa.graph.induced_subgraph(connector_node_list)

print('Number of nodes: {}'.format(connector_subgraph.vcount()))

print('Number of edges: {}'.format(connector_subgraph.ecount()))

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 12 of 23

Number of nodes: 358

Number of edges: 1562

Figure 3. Network obtained by extracting all the interactions between the nodes annotated in the
'Androgen receptor (AR)' of 'netpath', 'HH' of 'signalink' and 'Transforming growth factor beta (TGF-

beta) receptor' of 'netpath'.

The accompanying document Pathway_extraction.html is a rendered IPython Notebook
that contains code and output corresponding to this section.

3.5 Protein complex extraction

Omnipath also provides access to databases reporting protein complexes, such as CORUM
(http://mips.helmholtz-muenchen.de/genre/proj/corum). Again, if we want to know if our
genes of interest are annotated to participate in some protein complex, we just need to load
the database and make some queries.

load CORUM database (http://mips.helmholtz-

muenchen.de/genre/proj/corum)

pa.load_corum()

for i_node in query_nodes:

 i_complex_list = pa.gs(i_node)['complexes']['corum'].keys()

 if len(i_complex_list)>0:

 print("Gene {} is reported in the following complexes in the

CORUM database:".format(i_node))

 for i in i_complex_list:

 print("\t{}".format(i))

http://mips.helmholtz-muenchen.de/genre/proj/corum

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 13 of 23

 else:

 print("Gene {} is not reported to belong to any protein

complex in the CORUM database".format(i_node))

 print("---")

Gene FOXA1 is not reported to belong to any protein complex in the

CORUM database

Gene PTEN is not reported to belong to any protein complex in the

CORUM database

Gene SPOP is reported in the following complexes in the CORUM

database:

 Ubiquitin E3 ligase

Gene AR is reported in the following complexes in the CORUM database:

 AR-AKT-APPL complex

 AOF2-AR complex

Gene TP53 is reported in the following complexes in the CORUM

database:

 CNS-P53 complex

 p300-MDM2-p53 protein complex

 FHL2-p53-HIPK2 complex

 Axin-p53-HIPK2 complex

 P53-BARD1-Ku70 complex

 DAXX-Axin-p53-HIPK2 complex

 hSIR2-p53 complex

 FOXO3-TP53 complex, oxidative stress stimulated

 YY1-MDM2-p53 complex

 Daxx-Axin-p53 complex

 p53-BCL2 complex

 p53-SP1 complex

 NUMB-TP53-MDM2 complex

 MSH2/6-BLM-p53-RAD51 complex

 p53 homotetramer complex

 Er-alpha-p53-hdm2 complex

We can check the details of these complexes, for instance, the Ubiquitin E3 ligase complex
in which SPOP participates.

prot_complex_details = pa.gs("SPOP")['complexes']['corum']['Ubiquitin

E3 ligase']

prot_complex_details

{'all_members': [u'Q13618', u'Q9UER7', u'O43791'],

 'all_members_original': [u'Q13618', u'Q9UER7', u'O43791'],

 'diseases': u'',

 'full_name': u'Ubiquitin E3 ligase (SPOP, DAXX, CUL3)',

 'functions': u'Ubiquitin E3 ligases covalently attach ubiquitin to a

lysine residue on a target protein. Polyubiquitination marks proteins

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 14 of 23

for degradation by the proteasome. SPOP serves as an adaptor of Daxx

for the ubiquitination by Cul3-based ubiquitin ligase and subsequent

degradation by the proteasome. Experiments suggest that SPOP/Cul3-

ubiquitin ligase plays an essential role in the control of Daxx level

and, thus, in the regulation of Daxx-mediated cellular processes,

including transcriptional regulation and apoptosis.',

 'references': [u'16524876']}

The references field contains the pmid of the article supporting this complex. We can query

some details of it with the following code:

ref_pmid = prot_complex_details['references'][0]

pypath.main.Reference(ref_pmid).info()

we can also open the webpage with the article abstract in a

separate window with the following command

pypath.main.Reference(ref_pmid).open()

The accompanying document protein_complex_extraction.html is a rendered IPython
Notebook that contains code and output corresponding to this section.

3.6 Transcription Factors and surface receptors

Apart from pathway annotations, Omnipath also supports Gene Ontology annotations. We
can use them for several purposes, for example, locating transcription factors and surface
receptors.

load go annotations:

pa.load_go()

get the GO annotation:

pa.go_dict()

Some GO terms that may be useful:

(C) transcription factor complex

(C) transcriptional repressor complex

(P) cell surface receptor signaling pathway

() plasma membrane receptor complex

(C) plasma membrane

(C) cell surface

We can use one term to filter the nodes.

tf = pa.dgraph.vs.select(lambda vertex:

pa.go[9606].get_term('transcription factor complex') in

vertex['go']['C'])

tfr = pa.dgraph.vs.select(lambda vertex:

pa.go[9606].get_term('transcriptional repressor complex') in

vertex['go']['C'])

print('Number of nodes annotated as \'transcription factor complex\':

{}'.format(len(tf)))

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 15 of 23

print('Number of nodes annotated as \'transcriptional repressor

complex\': {}'.format(len(tfr)))

Note: some nodes may be annotated with both GO terms

print('Number of nodes annotated with any of the two terms above:

{}'.format(len(set(tf['label']+tfr['label']))))

Number of nodes annotated as 'transcription factor complex': 124

Number of nodes annotated as 'transcriptional repressor complex': 37

Number of nodes annotated with any of the two terms above: 155

Or we can filter the nodes according to several terms as well. For example, we can try to
locate all the nodes corresponding to cell membrane proteins located in its surface.

filter_func = lambda vertex: pa.go[9606].get_term('cell surface') in

vertex['go']['C'] and pa.go[9606].get_term('plasma membrane') in

vertex['go']['C']

pm = pa.dgraph.vs.select(filter_func)

print('Number of nodes annotated with \'cell surface\' and \'plasma

membrane\': {}'.format(len(pm['label'])))

Number of nodes annotated with 'cell surface' and 'plasma membrane':

215

However, Pypath also provides some specific methods to locate transcription factors and
receptors.

pa.set_transcription_factors()

pa_tf = pa.transcription_factors()

pa_tf = pa.graph.vs.select(lambda vertex: vertex['tf'] is True)

pa.set_receptors()

pa_rec = pa.graph.vs.select(lambda vertex: vertex['rec'] is True)

The accompanying document TF_location.html is a rendered IPython Notebook that
contains code and output corresponding to this section.

3.7 Negatome database

The Negatome database (http://mips.helmholtz-muenchen.de/proj/ppi/negatome/) contains
information on experimentally supported non-interacting protein pairs. In other words, the
interactions loaded with this database represent interactions that do not occur according to
lab experiments. This can be very useful information in different scenarios. For loading it we
can use Pypath’s load_resources() function.

pa.load_resources(lst=pypath.data_formats.negative)

If we load this resource after loading Omnipath, the edges in the graph will consist of both,
interactions supported by the literature and non-existent interactions according to Negatome.
We can get the list of edges coming from the Negatome database with the following line of
code:

http://mips.helmholtz-muenchen.de/proj/ppi/negatome/

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 16 of 23

negatome_edge_list = pa.graph.es.select(lambda edge: 'Negatome' in

edge['sources'])

An interesting question is whether there are edges with contradictory evidence, i.e. with
support in the literature and also listed in Negatome.

n_sources = np.array([len(i) for i in negatome_edge_list['sources']])

print('Number of edges with contradictory evidence:

{}'.format(np.sum(n_sources>1)))

Number of edges with contradictory evidence: 127

We can have a closer look at one of this contradictions and look into the references reporting
it to decide whether the interaction can really take place or not.

contradictory_edges = negatome_edge_list.select(lambda edge:

len(edge['sources'])>1)

i_contradictory_edge = contradictory_edges[0]

i_source_label = pa.graph.vs[i_contradictory_edge.source]['label']

i_target_label = pa.graph.vs[i_contradictory_edge.target]['label']

print(' == '.join([i_source_label, i_target_label]))

print('Sources: ' + ', '.join(i_contradictory_edge['sources']))

AKT1 == TSC1

Sources: Negatome, SPIKE

We can open the paper supporting this non-interaction for a more in-depth evaluation.

contradictory_ref =

i_contradictory_edge['refs_by_source']['SPIKE'][0]

contradictory_ref_info =

contradictory_ref.info()[contradictory_ref.pmid]

contradictory_ref.open() # opens reference in pubmed

The accompanying document Negatome_loading.html is a rendered IPython Notebook that
contains code and output corresponding to this section.

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 17 of 23

Chapter 4 Prior-Knowledge Network building

In some cases, we might want to have a prior-knowledge network with the aim of simulating
some experimental data. For example, Lescarbeau et al. (2014) provide a phosphoproteomic
dataset in prostate cancer cell lines under different perturbations and time points.

Table 2 provides a list of phosphoproteins considered of interest in Lescarbeau et al. (2014).
Here we have to take one thing into account: the names assigned to phosphoproteins might
not be standard names, and thus it may be tricky to find the correct match in terms of the
Uniprot ID or the gene symbol, which are the main entry point to Omnipath and Pypath. At
the moment, knowledge about the experiment and the system being studied is probably the
best way to find the correct matches.

We can use several of the techniques discussed in the previous chapter to extract our prior-
knowledge network. The first thing we can do is, having our list of proteins stored in the
variable query_set_d, retrieve all the links reported in the directed network.

query_set_dnetwork = pa.dgraph.induced_subgraph(query_set_d)

print('Number of edges: {}'.format(query_set_dnetwork.ecount()))

print('Number of nodes: {}'.format(query_set_dnetwork.vcount()))

Number of edges: 104

Number of nodes: 34

And we can check if there is any node or group of nodes not connected to the rest by
querying the connected components of the network.

extract connected components using igraph's clusters() function

here mode='weak' instead of the default value 'strong'

query_set_dclusters = query_set_dnetwork.clusters(mode='weak')

n_dclusters = len(query_set_dclusters)

print('Number of connected components: {}'.format(n_dclusters))

for i in xrange(n_dclusters):

 print('\tComponent {} size: {}'.format(i,

len(query_set_dclusters[i])))

Number of connected components: 5

 Component 0 size: 29

 Component 1 size: 2

 Component 2 size: 1

 Component 3 size: 1

 Component 4 size: 1

for i in range(1, n_dclusters):

 print('Genes in component {}:'.format(i))

 print(query_set_dnetwork.vs[query_set_dclusters[i]]['label'])

Genes in component 1:

['IL6R', 'IL6']

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 18 of 23

Genes in component 2:

['TUBB']

Genes in component 3:

['MAPK10']

Genes in component 4:

['MAPK13']

Phosphoprotein Gene Measured Stimulated

Erk1 MAPK3 1 0
Erk2 MAPK1 1 0
Akt1 AKT1 1 0
Akt2 AKT2 1 0
Akt3 AKT3 1 0
RPS6 RPS6 1 0
GSK3a GSK3A 1 0
GSk3b GSK3B 1 0
p38d MAPK13 1 -1
JNK1 MAPK8 1 0
JNK2 MAPK9 1 0
JNK3 MAPK10 1 0
HSP27 HSPB1 1 0
Stat3 STAT3 1 0
IGF-1 IGF1 0 1
IL6 IL6 0 1
EGF EGF 0 1
TNFa TNF 0 1
Docetaxel - 0 1
DHT - 0 1
PI3K PIK3CA 0 -1
mTOR MTOR 0 -1
MEK MAP2K1 0 -1
IKKa CHUK 0 -1
IKKb IKBKB 0 -1
b-Tubulin TUBB 0 0
AR AR 0 0
IGF1-R IGF1R 0 0
b-Catenin CTNNB1 0 0
IL6R IL6R 0 0
Jak JAK1 0 0
EGFR EGFR 0 0
RAS KRAS 0 0
Stress - 0 0
Rac RAC1 0 0
TNFR TNFRSF1A 0 0
NF-kB NFKB1 0 0

Table 2. List of phosphoproteins measured in Lescarbeau et al. (2014) and additional nodes
considered of interest. The column stimulation takes the value 1, -1 or 0 depending on whether the

node was stimulated with an activating agent, inhibited or not perturbed, respectively.

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 19 of 23

In the case of the unconnected node IL6R, if we look in the undirected network instead of in
the directed one, we can see that it is connected to JAK1. The reason for not being
connected in the directed network is that when getting a directed network, by default, only
edges with an explicit reference to its directionality are kept. We can thus add this link
manually to our network, as we are trying to get a single network that connects all the nodes
and we have a reference for it (although without an explicit mention to its directionality).

add directed edge from IL6R to JAK1

label_source = 'IL6R'

label_target = 'JAK1'

iprot_source = query_set_dnetwork.vs.find(label=label_source).index

iprot_target = query_set_dnetwork.vs.find(label=label_target).index

query_set_dnetwork.add_edge(iprot_source, iprot_target)

copy attribute values present in the undirected network

original_attributes = pa.graph.es(pa.get_edge([pa.gs(label_source),

pa.gs(label_target)]))[0].attributes()

new_edge_id = query_set_dnetwork.get_eid(iprot_source, iprot_target)

new_edge_pointer = query_set_dnetwork.es(new_edge_id)[0]

for (ikey, ivalue) in original_attributes.iteritems():

 new_edge_pointer[ikey] = ivalue

For connecting the rest of the nodes, we might search paths to connect them to the nodes in
the big connected component as suggested in the previous chapter. If we do it, we will
observe that we are able to connect those isolated nodes to many other nodes in the big
connected component just using one intermediary node not present in the list of queried
nodes.

Because here we are interested in extracting a network that could be used for simulation, we
want to keep the network small, so we decide not to include all those possibilities.
Furthermore, in Lescarbeau et al. (2014), they provide a diagram of the signaling pathway
under study, so we can decide to include all these possible edges or only some of them
based on that. For example, β-Tubulin (TUBB) is not connected to other nodes in the
diagram. Also, JNK3 (MAPK10) may already be considered to be represented by JNK1 and
JNK2 (MAPK8 and MAPK9 respectively). On the other hand, p38 (MAPK13) is connected to
Rac (RAC1) and HSP27 (HSPB1) in the diagram. We can check one of the shortest paths
that connects RAC1 to MAPK13 and another that connects MAPK13 to HSPB1.

RAC1 --> PAK1 --> MAP2K3 --> MAPK13

MAPK13 --> PRKD1 --> HSPB1

To go from RAC1 to MAPK13 we need at least 3 steps in the directed network. We may
decide, however, to add this connection nonetheless. In other words, we can decide to
complete the network with the diagram provided in Lescarbeau et al. (2014) in mind. If the
small network obtained this way does not explain the observations we can go back and
consider other alternative wiring. We will leave TUBB and MAPK10 isolated for the moment
too.

Additionally, we might be interested in limiting the indegree of the nodes. The reason is that
this may help in the process of fitting the model to the data in another later stage. We can
always come back later and include alternative edges if the model we obtain does not fit the
data appropriately. In this case, we have decided that we would like to limit the maximum
indegree to 5. For achieving this, we need to discard some edges for those nodes with an

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 20 of 23

indegree higher than 5. To choose the edges to be discarded, one option is to check the
number of references supporting each edge and discard those with the lowest support.

Add a new attribute to each vertex with its indegree

pkn_network.vs['indegree'] = [i for i in pkn_network.indegree()]

max_indegree = 5

ids_edges_to_remove = []

for i_vertex in pkn_network.vs:

 if i_vertex['indegree']>max_indegree:

 edges_in = pkn_network.es.select(_target=i_vertex.index)

 print(i_vertex['label'])

 print("nrefs: " + ", ".join([str(i) for i in

edges_in['nrefs']]))

 #print("degree of source: " + ",

".join([str(pkn_network.vs[i.source].degree()) for i in edges_in]))

 # get the threshold of nrefs that leaves max_indegree edges

or less

 nrefs_list = np.array([e['nrefs'] for e in edges_in])

 nrefs_list.sort()

 nrefs_threshold = nrefs_list[-(max_indegree+1)]

 # get indices of edges to be removed

 ids_edges_to_remove.extend([e.index for e in

edges_in.select(nrefs_le=nrefs_threshold)])

 print("Suggested deletions: ")

 for i_edge_to_remove in

edges_in.select(nrefs_le=nrefs_threshold):

 i_source_label =

pkn_network.vs[i_edge_to_remove.source]['label']

 i_target_label =

pkn_network.vs[i_edge_to_remove.target]['label']

 print('\t' + ' --> '.join([i_source_label,

i_target_label]) + "\t({} refs)".format(i_edge_to_remove["nrefs"]))

 print('---')

AKT1

nrefs: 8, 22, 1, 26, 11, 2, 4

Suggested deletions:

 TNF --> AKT1 (1 refs)

 HSPB1 --> AKT1 (2 refs)

CHUK

nrefs: 8, 5, 7, 1, 2, 32, 2, 1, 1

Suggested deletions:

 TNF --> CHUK (1 refs)

 AKT2 --> CHUK (2 refs)

 MTOR --> CHUK (2 refs)

 HSPB1 --> CHUK (1 refs)

 AKT3 --> CHUK (1 refs)

STAT3

nrefs: 21, 18, 1, 9, 18, 17, 4

Suggested deletions:

 RAC1 --> STAT3 (1 refs)

 MTOR --> STAT3 (4 refs)

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 21 of 23

EGFR

nrefs: 2, 1, 15, 9, 15, 3

Suggested deletions:

 JAK1 --> EGFR (1 refs)

CTNNB1

nrefs: 2, 7, 8, 18, 1, 1, 1, 32, 2, 3

Suggested deletions:

 AKT1 --> CTNNB1 (2 refs)

 NFKB1 --> CTNNB1 (1 refs)

 AKT2 --> CTNNB1 (1 refs)

 IKBKB --> CTNNB1 (1 refs)

 GSK3A --> CTNNB1 (2 refs)

NFKB1

nrefs: 8, 1, 4, 2, 1, 8

Suggested deletions:

 CTNNB1 --> NFKB1 (1 refs)

 AKT2 --> NFKB1 (1 refs)

We should take into account that removing edges may have undesired consequences, such
as disconnecting a node from the rest of the network. If this happens, we might decide not to
delete some of these edges. In this case, we have no new disconnected nodes.

pkn_network_v2 = pkn_network.copy()

pkn_network_v2.delete_edges(ids_edges_to_remove)

This last network, which could be further refined, contains 34 and 90 edges (Figure 4).

Figure 4. Extracted directed prior knowledge network for nodes of interest in Lescarbeau et al 2014.

The accompanying document lescarbeau_et_al_2014_neighbourhood.html is a rendered
IPython Notebook that contains code and output corresponding to this chapter with some
additional observations.

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 22 of 23

Chapter 5 Summary and Conclusion

This document has given an introduction to Omnipath and Pypath, and how they can be
used to address common tasks in prior knowledge retrieval. The different use cases
presented on it show the various ways in which Omnipath and Pypath can help to build a
computational pipeline for the extraction of prior knowledge protein interaction information.

Following the pipeline presented in Chapter 4, members of the consortium are using
Omnipath not only to extract the links reported in some of the 27 high confidence curated
databases when a new protein is added to the network of prostate cancer (WP5), but also to
update the network regularly with new links from recent publications.

In summary, Omnipath and Pypath greatly facilitate the integration and extraction of
biological prior knowledge for analysis and model building, and they can easily be
incorporated into wider data processing pipelines. Omnipath and Pypath are available at
http://omnipathdb.org.

D3.1 - Computational pipeline to extract prior network information

PrECISE D3.1 Page 23 of 23

Chapter 6 Bibliography

[1] Türei D, Korcsmáros T, Saez-Rodriguez J (2016) Benchmark of literature curated
signalling pathway resources (under review)

[2] Lescarbeau RM, Kaplan DL (2014) Quantitative analysis of castration resistant prostate
cancer progression through phosphoproteome signalling. BMC Cancer, 14, 325

	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Preliminaries
	Chapter 3 Omnipath overview
	3.1 ID conversion
	3.2 Initializing the network
	3.3 Node neighbourhood exploration
	3.4 Pathway extraction
	3.5 Protein complex extraction
	3.6 Transcription Factors and surface receptors
	3.7 Negatome database

	Chapter 4 Prior-Knowledge Network building
	Chapter 5 Summary and Conclusion
	Chapter 6 Bibliography

