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Executive Summary 

Knowledge about tumour clonal evolution can help interpret the function of genetic alterations 
by pointing out initiating events and events that contribute to the selective advantage of 
proliferative, metastatic, and drug-resistant tumour subclones. Clonal evolution can be 
reconstructed from estimates of the relative abundance (frequency) of subclone-specific 
alterations in tumour biopsies, which, in turn, informs on the cellular composition of each 
tumour subclone. However, estimating these frequencies is complicated by the high genetic 
instability that characterizes many cancers. Models for genetic instability suggest that copy 
number alterations (CNAs) can dramatically alter mutation-frequency estimates and thus affect 
efforts to reconstruct tumour phylogenies. Our analysis suggests that a detailed accounting of 
CNAs is required for accurate mutation frequency estimates, and that such accounting is 
impossible for many cancer types using molecular profiling of one biopsy per tumour. Instead, 
we propose an optimization algorithm, Chimaera, to account for the effects of CNAs using 
profiles of multiple biopsies per tumour. Analyses of simulated data and profiles of a prostate 
cancer, hepatocellular carcinoma, and Wilms’ tumours suggest that Chimaera estimates are 
consistently more accurate than previously proposed methods, resulting in improved 
phylogeny reconstructions, and the discovery of recurrent initiating mutations and key 
tumourigenesis events. We used Chimaera to analyse prostate cancer profiles, identifying 
mutations associated with initiating tumour subclones as well as tumour subclones that 
respond or are resistant to therapies.  
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Chapter 1 Introduction 

Pan-cancer tumour profiling has identified recurrent alterations that are associated with tumour 
etiology at the loci of thousands of genes but the interpretation of genetic alterations remains 
a major challenge (Ding et al., 2018; Futreal et al., 2004; Higgins et al., 2007). Knowledge 
about the clonal evolution of tumours can point to genetic alterations that both contribute to 
tumorigenesis, indicate prognostically relevant intra-tumour variability, and point to refractory 
tumour subclones (Espiritu et al., 2018; Fidler et al., 1982; Nowell, 1976). Specifically, clonal 
evolution—depicted as a phylogenetic tree in Figure 1A—can help identify alterations that play 
a role in tumour initiation as well as those that confer a selective advantage to altered tumour 
cells. Moreover, information about its subclone composition is important for predicting the 
cancer’s potential for drug resistance and metastasis, which vary across tumour subclones 
(Boutros et al., 2015) and are the key determinants of patient survival. Consequently, tumour-
subclone characterization is essential for designing personalized therapies that target all 
tumour subclones and may hold the key to predicting tumour progression, drug sensitivity, and 
patient outcome.  

Current methods that rely on DNA-profiling to reconstruct clonal evolution of tumours can be 
classified into two categories: methods that primarily rely on single-cell profiles (Gao et al., 
2016; Mann et al., 2016; Suzuki et al., 2015; Wang et al., 2014b) and those that 
computationally resolve mixtures of subclones from molecular profiles of tumours, i.e. profiles 
of pools of cells that originate from a common malignant lesion (Andor et al., 2016; El-Kebir et 
al., 2015; Espiritu et al., 2018; Niknafs et al., 2015). Single-cell DNA sequencing can produce 
more definitive estimates of the proportion of tumour cells that contain each genetic alteration 
(alteration frequencies) and more complete profiles of tumour subclones, including information 
about the co-occurrence of alterations within each subclone. Its primary disadvantage is 
operational—the availability of high-quality tumour samples that permit single-cell isolation and 
profiling, and the accuracy and cost associated with parallel sequencing DNA from a multitude 
of cells per tumour. Alternatively, single-cell RNA sequencing or protein profiling can be used 
to define tumour subclones, but these do not directly point to key driving genetic alterations. 
Moreover, the accuracy of single-cell mutation profiling is an issue due to limited material 
availability in single cells(Chu et al., 2017), and this is not likely to improve as future sequencing 
technologies focus on profiling formalin-fixed paraffin-embedded (FFPE) tumour samples 
(Cieslik et al., 2015; Getz et al., 2012).  

Focusing on single-nucleotide somatic variants (SNVs; or simply mutations), we sought to 
reconstruct clonal evolution from mutation profiles of genetically unstable cancers. This entails 
deconvolving mutation frequencies, alteration-subclone associations, and CNAs from 
molecular profiles—including whole-exome sequencing (WES) assays—that produce average 
estimates across cellular ensembles (Figure 1B). One approach to improving the accuracy of 
such deconvolutions is to profile multiple biopsies from the same tumour across time points 
(Wang et al., 2014a) or across regions (Boutros et al., 2015; Gundem et al., 2015). This 
approach relies on the assertions that genetic alterations that are specific to the same tumour 
subclone are expected to co-occur with the same frequency across biopsies and that the clonal 
composition across time or heterogeneous regions varies; i.e. multiple sampling will allow for 
the aggregation and deconvolution of the frequencies of most mutations with improved power. 
It’s important to note that mutations that underwent convergent evolution (Kuipers et al., 2017) 
will not be aggregated with other mutations form the same tumour subclone because of 
differing frequency estimates across biopsies. 
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A central challenge for aggregating and estimating mutation frequencies in tumours with 
unstable genomes is accounting for the effects of CNAs that can alter mutated-read fractions—
the frequencies of observed alternative alleles in the profiling assay—by altering contributions 
from reference alleles in mutation-free cells as well as both alternative and reference alleles in 
mutated cells (Figure 1C). In turn, errors in mutation-frequency estimates can prevent accurate 
phylogeny reconstructions (Figure 2). Our approach was to introduce a model for the effects 
of CNAs on mutated-read fractions. We use this model as a basis for simulations with CNA 
distributions that are compatible with observations from The Cancer Genome Atlas (TCGA)-
profiled primary breast, HCCs, PCs, and Wilms’ tumours (TCGA, 2017; The Cancer Genome 
Atlas, 2012; The Cancer Genome Atlas, 2015).  

Data were simulated using synthetically generated phylogeny, including CITUP phylogenies 
(Malikic et al., 2015), followed by the duplication or loss of sequencing reads according to 
simulated effects of CNVs. Several methods are available in the literature to estimate mutation 
frequencies and clonal compositions. ABSOLUTE (Carter et al., 2012) infers tumour purity and 
malignant cell ploidy directly from the analysis of somatic DNA alterations, by fitting estimates 
of copy-ratio of both homologous chromosomes with a Gaussian mixture model, with 
components centred at the discrete concentration-ratios implied by an initial frequentist 
estimation. AncesTree (El-Kebir et al., 2015) provides a combinatorial characterization of the 
clonal evolution of a tumour by assuming than in an error-free data mutations can be described 
by a perfect phylogeny matrix, which is found using integer linear programming; the problem 
is extended to real data using a probabilistic model for errors. EXPANDS (Andor et al., 2014) 
clusters mutations based on their cell-frequency probability distributions; clusters are next 
extended by members with similar distributions, and pruned based on statistical confidence by 
comparing the cluster maxima and peaks observed outside the core region. PhyloWGS 
(Deshwar et al., 2015) reconstructs phylogenies based on a model for simple somatic 
mutations in addition to a correction for CNAs, all based on a single biopsy per tumour. 
SCHISM  (Niknafs et al., 2015) takes as input mutation cellularity estimations and mutation 
clustering inferred by other methods, and uses a generalized likelihood ratio to infer lineage 

 

Figure 1. Footprint of clonal evolution across tumour biopsies.  

(A) Tumour phylogeny composed of five dominant tumour subclones and wildtype (WT) 
cells—with no somatic mutations—that make up the cellular composition of four tumour 
biopsies (B). Subclones 3 and 5 were more proliferative—i.e. the proportion of these 
subclones (cellularity) in containing biopsies is greatest. (C) Failure to account for genomic 
instability can skew cellularity estimates because fractions of reads (mutated-read 
fractions) presenting each mutation in WES depend on the copy numbers of the alleles in 
both mutated and non-mutated cells. Consequently, in genomically-stable tumours, 
biopsies from (B) will have mutated-read fractions that differ from those of (D) genomically 
unstable tumours with the same mutation frequencies. 
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precedence and lineage divergence. A genetic algorithms is then used to build phylogenetic 
trees. 

Attempts to estimate the frequencies and cellularities of mutations and subclones using 
ABSOLUTE, AncesTree, EXPANDS, PhyloWGS, and SCHISM revealed variable success 
rates, with some methods showing consistently poor accuracy. EXPANDS and PhyloWGS, 
which were designed for phylogeny reconstruction using profiles of one biopsy per tumour, and 
ABSOLUTE, which is best known and most effective for estimating tumour purity, had 
consistently poor accuracy in our simulations. While SCHISM and AncesTree, which do not 
explicitly account for the full range of observed CNAs in tumours, were less accurate on 
simulations with CNAs. Like PhyloWGS, we concluded that explicit accounting for CNAs is 
required in order to approximate mutation frequencies accurately. However, more than one 
biopsy per tumour are required for accurately approximating mutation frequencies and CNAs 
at mutated loci.  

To address this challenge and improve mutation-frequency and CNA estimations from WES 
of tumours with genetic instability, we developed Chimaera: clonality inference from mutations 
across biopsies. Chimaera relies on multiple biopsies for the same tumour to, first, approximate 
CNAs and mutation frequencies; then, identify mutations with similar approximate frequencies 
and associate them with subclones; and, finally, to estimate the true frequencies of these 
mutations and the associated subclones. As is the case for estimates made by SCHISM, 
ABSOLUTE and other methods, Chimaera is not able to produce frequency estimates for all 
mutations, but compared to existing methods is able to process and determine true frequencies 
for more variants, exhibiting more power in identifying potentially tumour initiating mutations 
and disease drivers. Finally, to demonstrate that Chimaera is able to reconstruct subclones 
from tumour profiles we produced Chimaera-inferred subclones and resulting phylogeny from 
profiles of 6 castration-resistant prostate cancer (CRPC) patients and a set of profiles extracted 
from 5 different tumour areas from 10 hepatocellular carcinoma (HCC) patients (Lin et al., 
2017); 3 Wilm’s tumour patients; and 5 CRPC patients that were profiled at multiple time points 

 

Figure 2. Small variations in mutation frequency estimates can impact the inference of ancestral 
relations.  

(A) Simulated tumour phylogeny, (B) subclone cellularities, and (C) frequencies of subclonal 
mutations across biopsies. (D) Ancestral relations between subclones can be inferred from 
comparisons of their frequency vectors: Subclone 4 frequencies are greater than those of subclone 
3 across all biopsies, but (E) errors in frequency estimates (red) can violate this relationship and 
complicate tumour-phylogeny reconstruction efforts.  
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using ultra-high resequencing. Results on our effort to identify prostate cancer subclones that 
are predictive of response to therapies are reported in WP2. 

Focusing on single-nucleotide somatic variants (SNVs; or simply mutations), we describe the 
clonality problem as that of associating mutations with subclones and inferring ancestral 
relations between subclones. The goal of the resulting set-theoretic formulation, for each 
tumour, is to aggregate co-occurring mutations across biopsies, estimate the frequency of 
each aggregate in every biopsy, and identify partial orders across aggregates that are 
consistent across biopsies. When viewed this way, each tumour subclone can be associated 
with a frequency vector that describes the proportion of cells containing its mutations in each 
biopsy. Establishing ancestral order between two subclones then depends on (probabilistic) 
comparisons between their corresponding mutation frequencies.  

Our first challenge was to estimate mutation frequencies across biopsies. In cellular 
environments with stable genomes, where CNAs are few, accurate mutation-frequency 
estimation is a function of allele coverage. Mutation frequencies can be computed directly from 
sequencing evidence for the mutated allele—the fraction of reads (mutated-read fraction) that 
support the mutation as observed in sequencing data. However, CNAs can affect mutation 
frequency estimates because the mutated-read fraction is affected by contributions from alleles 
in mutation-free cells as well as both the mutated and wildtype forms of the allele in mutated 
cells. Changes to the copy number of one of these allele contributors can alter the mutated-
read fraction dramatically, and, if not accounted for, will result in inaccurate mutation-frequency 
estimates (Figure 1C). These errors, in turn, prevent accurate phylogeny reconstructions 
(Figure 2). While our approach may not be feasible for all tumour types, it is a natural fit for 
high-risk patients with blood malignancies and some solid tumours, including hepatocellular 
carcinomas (HCCs), prostate carcinomas (PCs), and Wilm’s tumours. 

 

 

 



D1.2 – Final clone inference   

PrECISE D1.2 Page 5  

Chapter 2 Methods 

We begin by formulating the phylogeny reconstruction problem in set-theoretic terms, which 
leads to a natural model for the effects of CNVs on mutated-read fractions in WES. We 
describe our methodology for simulating WES tumour profiles, as well as our efforts to 
deconvolve mutation frequencies from simulated data using ABSOLUTE, AncesTree, 
EXPANDS, SCHISM, and Chimaera. Finally, to demonstrate that Chimaera can be effectively 
applied to clinical data, we describe a reconstructed phylogeny from WES profiles of ten same-
tumour CRPC biopsies and a set of five same-tumour HCC biopsies from nine patients.  

2.1 Phylogeny reconstruction problem 

Let 𝑀 = {𝑚: 𝑚 ∈ ℕ, 1  𝑚  𝑛} denote the set of 𝑛  mutations identified across a set of profiled 

biopsies 𝑆. The mutation burden in any given cell is given as a subset of 𝑀, 𝛾 ⊆ 𝑀, or as an 
element of the power set over 𝑀, 𝒫(𝑀); i.e. 𝛾 ∈ 𝒫(𝑀) is a specific mutation ensemble that 

characterizes a tumour subclone. We denote the cellularity of 𝛾 and its corresponding subclone 
in biopsy 𝑠 ∈ 𝑆 as 𝜌𝛾

𝑠, and the frequency of mutation 𝑚 ∈ 𝛾 in biopsy 𝑠 as 
𝑚
𝑠 =

∑ 𝜌𝛾
𝑠

{𝛾∶ 𝛾∈ 𝒫(𝑀),   𝑚∈𝛾} . Consequently, ∑ 𝜌𝛾
𝑠

𝛾∈ 𝒫(𝑀) = 1 and the assignment 𝐴 = {𝜌𝛾
𝑠 ∶  𝛾 ∈

 𝒫(𝑀), 𝑠 ∈ 𝑆} produces a solution to our clonality reconstruction formulation. 

2.2 Mutation frequencies  

As defined above, for a mutation 𝑚 in biopsy 𝑠 ∈ 𝑆, 
𝑚
𝑠  denotes the frequency of cells in 𝑠 with 

mutation 𝑚. The total copy number 𝐶𝑠 of the allele targeted by the mutation can be estimated 
from WES data. 𝐶𝑠 is composed by: the copy numbers of the allele in cells that lack mutation 

𝑚, 𝛿𝑠, the copy number of the wildtype allele in 𝑚-mutated cells, 𝛿𝑤
𝑠  and the copy number of 

the mutated allele in 𝑚-mutated cells, 𝛿𝑚
𝑠  (Figure 3). Notice that if no copy number event has 

occurred at the locus 𝑚 : 𝛿𝑠 = 2, 𝛿𝑤
𝑠 = 1 and 𝛿𝑚

𝑠 = 1. Adopting the infinite-sites assumption, 
we denote the mutated-read fraction—the fraction of reads reflecting the mutated versus 
wildtype allele in a WES profile—in sample 𝑠 as 𝑓𝑚

𝑠 . Then, we can formulate the following 
equations (Eq. 1 and Eq. 2). 

𝐶𝑠 = 𝛿𝑠(1 − 
𝑚
𝑠 ) + (𝛿𝑤

𝑠 + 𝛿𝑚
𝑠 )

𝑚
𝑠  Eq. 1 

𝑓𝑚
𝑠 =

𝑚
𝑠 𝛿𝑚

𝑠

𝐶𝑠     Eq. 2 

Eq. 1 provides a weighted sum of the copy number contribution from each allele type, and Eq. 
2 gives the ratio of the number of reads coming from the mutated allele to the total number of 
reads.  

2.3 Chimaera  

Chimaera proceeds in three steps. First, mutation frequencies are approximated from 
sequencing and CNV data in each biopsy; then, mutations with similar frequency vectors 
(where each vector component gives the mutation frequency in each biopsy) are clustered 
together to form subclones; and finally, mutation frequencies and CNVs for these alleles are 
refined using an optimization process. The optimization assumes that all clustered mutations 
that are associated with the same subclone have the same frequency in each tumour biopsy 
and that 𝛿𝑚

𝑠 —the average copy number of the 𝑚-mutated allele—is the same across all 
biopsies from the same tumour.  

A first approximation. We first approximate the true frequency of the mutation 
𝑚
𝑠  by 

accounting for tumour purity, i.e., the fraction of tumour cells in the biopsy versus normal cells, 
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and assuming that the allele’s average copy number in tumour cells—whether mutated or not—
is fixed. Let 𝑝𝑠 be the purity of biopsy 𝑠, then Eq.2 can be rewritten as follows: 

𝑓𝑚
𝑠 =

𝑚
𝑠 𝛿𝑚

𝑠 𝑝𝑠

2(1−𝑝𝑠)+𝐶𝑠𝑝𝑠  Eq. 3. 

The experimentally observed copy number, 
Cobs

s , depends on the purity of the sample 

and the copy number of the sample tumour 
cells, 𝐶𝑠, as follows: 

𝐶𝑜𝑏𝑠
𝑠 = 2(1 − 𝑝𝑠) + 𝐶𝑠𝑝𝑠 Eq. 4 

where 𝐶𝑜𝑏𝑠
𝑠  can be estimated using 

additional biochemical assays, genetic 
sequencing, or through computational 
analysis of WES data (Koboldt et al., 2012), 
and the normal cells are assumed to have 
been corrected for germline copy number 
variants associated biases. 

The simplifying assumption that the allele’s 
average copy number of the mutated allele 
in tumour cells is constant across biopsies, 

i.e.: 𝛿𝑚
𝑠 =

𝐶𝑠

2
. Under this approximation, we 

can use Eqs. 3 and 4 to eliminate 𝐶𝑠and 
obtain a first approximation of the mutation 

frequency 
𝑚
�̃� : 


𝑚
�̃� = 𝑚𝑖𝑛 (

2𝑓𝑚
𝑠 𝐶𝑜𝑏𝑠

𝑠

𝐶𝑜𝑏𝑠
𝑠 −2(1−𝑝𝑠)

, 1)   Eq. 5. 

This constraint will be later removed in the optimization process that follows, but is necessary 
at this stage to obtain a first approximation that mutation frequencies that takes into account 
the copy number influence from WES measurements.  

Subclone reconstruction. The approximate mutation frequency vectors (Eq. 5) are next 
clustered to identify candidate groups of mutations that form subclones. We consider clustering 
algorithms with robust treatment of outliers in order to ensure good clustering stability and 
quality. Specifically, we use hdbscan (McInnes, et al., 2017), a density-based hierarchical 
clustering method that aims at maximising the stability of the obtained clustered against noise 
and requires minimal parameter selection. The number of clusters is determined automatically 
based on the minimal number of mutations that has to be considered to constitute a cluster. 

We also use tclust (Fritz et al., 2012), a non-hierarchical robust clustering that trims outliers 
based on a probabilistic model. The number of clusters is selected by optimizing intra-cluster 
entropy or the sum of square errors (SSE), and using a variety of optimization methods 
including the Elbow method, Gaussian mixture decomposition (GMD), and SD index (Celeux 
et al., 1995; Kovács et al., 2005; Krzanowski et al., 1988). The clustering based on hdbscan 
showed better performance on the generated synthetic data compared to others, especially 
when considering the number of mutations processed. Furthermore, it has the advantage of 
avoiding imposing a prior distribution on the mutations frequencies. Once the clusters are 
found, Chimaera assumes that each cluster represents a subclone and uses the mutation 
assignment to infer subclone frequencies and copy number estimates for each mutated allele 
in the final optimisation step. 

Frequency and copy number inference. Focusing on subclone 𝛾 ∈ 𝒫(𝑀), Eq. 3 describes a 
relationship between the frequencies and copy numbers of mutations in 𝛾: 

 

Figure 3. Our mutation-centric model for the 
effects of CNVs on mutated-read fractions in 
WES. In each biopsy 𝑠, the mutated-read fraction 

is a function of the true mutation frequency 
𝑚
𝑠  

and (1) the copy numbers of the allele in all 
profiled cells—tumour and WT—that lack this 
mutation, 𝛿𝑠, and (2) the copy numbers of the 
wildtype and the mutated allele in tumour cells 
with the mutation, 𝛿𝑤

𝑠 , 𝛿𝑚
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
𝑚
𝑠 𝛿𝑚

𝑠 = 𝑓𝑚
𝑠 𝐶𝑜𝑏𝑠

𝑠

𝑝𝑠 ≡ ℬ𝑚s,   ∀  𝑚 ∈ 𝛾, 𝑠 ∈ 𝑆. Eq. 6 

where, ℬ𝑚s is the entry of a matrix 𝓑 ∈ ℝ|𝑆|,|𝛾| corresponding to mutation 𝑚 and biopsy 𝑠. 𝓑 is 
fully determined from analysis of sequencing assays, including purity , observed copy 
numbers, and observed mutated-read fractions of each mutation. 

Unfortunately, the right-hand side of Eq. 6 – a multiplication of frequencies and copy numbers 
–cannot be analytically decoupled. However, mutations from the same subclone occur in cells 
with shared evolutionary history, and thus are expected to show similar mutation frequencies, 
i.e. 

𝑚𝑖

𝑠 = 
𝑚𝑗

𝑠 ≡ 𝑠 ∀ 𝑚𝑖, 𝑚𝑗 ∈ 𝛾. Notice that the same mutations 𝑚𝑖, 𝑚𝑗 may have different 

frequencies in a different biopsy, as the subclones identified in different biopsies are not 
constraint to descend from the same ancestral parent. Further, we assume that the copy 

number of each mutation 𝑚 is constant across biopsies, i.e.  δ𝑚
s𝑖 = δ𝑚

s𝑗 ≡ δ𝑚 ∈ [0, 𝐶𝑁]  ∀ s𝑖, s𝑗 ∈

𝑆, where 𝐶𝑁 is a fixed upper bound for the copy number; 𝐶𝑁 = 15 in our simulations and WES 
analysis. While we expect that this assumption will introduce some errors to the approximation 
of 𝛿𝑚

𝑠 , it will have limited effects on the selection of optimal mutation frequencies because the 
variability of copy number averages for the mutated allele across biopsy is expected to be low. 
We also note that we have not assumed stable genomes in our simulated data, i.e the 
generated data displays variable copy numbers for the same mutated allele across biopsies, 
in order to have an accurate estimate of the committed error.  

After these assumptions, the optimization problem for each subclone 𝛾 ∈ 𝒫(𝑀), based on Eq. 
6, can be formulated as:  

𝑚𝑖𝑛‖𝑠⃑⃑⃑⃑ ⊗ δ𝑚
⃑⃑ ⃑⃑  ⃑ − 𝓑‖

2
 ; 0 ≤ δ𝑚 ≤ 𝐶𝑁 , 0 ≤ 𝑠 ≤  1, ∀𝑚 ∈ 𝛾, ∀𝑠 ∈ 𝑆. Eq. 7 

where 𝑠⃑⃑⃑⃑  is the mutation frequency vector across biopsies for all mutations in 𝛾; δ𝑚
⃑⃑ ⃑⃑  ⃑ is the copy-

number vector for each mutation in 𝛾; 𝓑 is as defined in Eq. 6; and 𝑠⃑⃑⃑⃑ ⊗ δ𝑚
⃑⃑ ⃑⃑  ⃑ denotes the outer 

product of vectors 𝑠⃑⃑⃑⃑  ∈ ℝ|𝑆| and δ𝑚
⃑⃑ ⃑⃑  ⃑ ∈ ℝ|𝛾|. We used Sequential Least Squares Programming 

(SLSQP) optimization (Sheppard et al., 2008) to find an optimal solutions of Eq. 7, where 
multiple runs with multiple initializations are used to avoid being trapped in bad local optima. 
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Chapter 3 Simulation of WES data 

WES simulations were based on phylogenies and associated cellularity matrices that describe 
ancestral relations between 6 to 12 subclones. These were either generated by us (see Figures 
4A, B) or adapted from CITUP. Each subclone was associated with 20 to 50 somatic mutations, 
and each somatic mutation was associated with a trio of copy numbers—δ^s, δ_w^s, and 
δ_m^s—that were taken from truncated normal distributions with means µ∈{1,2,3}, where µ=1 
corresponds to no copy number changes,  and standard deviation σ∈{0,1,2,3}; σ=0 was used 
only when µ=1. The resulting copy numbers model a range of genetic instability conditions that 
was in line with observed copy number changes in PRAD and BRCA tumours (Figure 4C, D). 
We assumed no linkage between simulated CNVs of any mutations. In addition, we added up 
to 10% of wildtype reads for all simulated mutations to account for the potential inclusion of 
non-tumour cells in the assay (WT subclone in Figure 1A). Total coverage for each allele—i.e. 
the number of reads covering both wild-type and mutated genetic position —was taken by 
sampling mutation coverage values from our CRPC tumour biopsies. Finally, once idealized 
counts were available for both mutated and wild-type alleles, noise was added to simulate 
duplication or loss of up to 5% of the observations according to a uniform distribution. Each 
simulation was repeated to produce six biopsies per tumour using a distinct cellularity vector 
for each biopsy (as depicted in Figure 4A, B). The availability of six biopsies per tumour 
increases the likelihood that mutations can be aggregated and subclone mutation frequencies 
can be compared to infer ancestral relations. We note that while our CRPC tumour was profiled 
at ten regions, setting a six-biopsy minimum will exclude the profiling of many tumour types 
using our methods; this was a compromise between clinical feasibility and power to infer 
mutation frequencies and phylogenies. 

 

Figure 4. Our synthetic data generation and a comparison of simulated CNV distributions to those 
that were observed in tumours.  

(A) Representative phylogenies and (B) a representative cellularity matrix. (C) Density plots of 
average copy numbers across profiles of TCGA prostate (PRAD) and breast (BRCA) tumours, and 
our CRPC tumour. PRAD1 and PRAD2 show genome-wide CNV distributions in each of two PRAD 
tumours, while PRAD and BRCA distributions are taken across genes and tumours; CNVs ranged 
from 0 to >260x. (D) Simulated CNVs ranged from 0 to 15x. 
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Chapter 4 Accuracy of mutation-frequency 

estimation on simulated data  

We compared the accuracy of EXPANDS, ABSOLUTE, SCHISM, AncesTree, and Chimaera 
on simulated data, as described in Methods. Phylogeny reconstruction success and clonality-
inference accuracy by EXPANDS and ABSOLUTE were the lowest. EXPANDS relies on single 
biopsies, and when evaluated on phylogenies that were composed of as few as 3 tumour 
subclones, EXPANDS-reconstructed phylogenies from profiles of same-tumour biopsies (both 
simulated and collected from the clinic including the CRPC reported on here) had few common 
ancestral inferences and performance was poor in every tested simulated instance. In contrast, 
SCHISM-reconstructed phylogenies from synthetic constructions with 3 tumour subclones 
were accurate in 100% of tested instances. ABSOLUTE can process profiles of multiple 
biopsies per tumour and has good accuracy for inferring tumour purity in our synthetic data. 
However, when using default parameters, errors in ABSOLUTE frequency-inferences were 
more than double those of SCHISM. Parameter optimization through human intervention 
consistently improved its accuracy, but it remained less accurate than SCHISM. Moreover, the 
degree of human intervention that this required was not compatible with large-scale 
benchmarking. Consequently, we focused on accuracy comparisons between inferences by 
SCHISM, AncesTree, and Chimaera (as given in Figure 5), and excluded EXPANDS and 
ABSOLUTE from further analyses. 

AncesTree accepts no external input when estimating mutation frequencies, but SCHISM and 
can be guided by externally-inferred mutation clusters. SCHISM’s implementation includes its 
own selected clustering methods, and these were also used to compare accuracy. We 
clustered mutations with tclust based on five optimization methods: ElbowSSE, Entropy, GMD, 
Mclust, and SDIndex. We compared the accuracy of methods and pipelines on 2000 simulated 
assays, including both simulated assays with and without modelled genetic instability (varying 
mutation copy numbers). The accuracy of SCHISM estimates was better on average than that 
of AncesTree, but it was relatively sensitive to clustering optimization methods, with SDIndex 
outperforming other methods, including those included in SCHISM’s implementation. 
Comparatively, Chimaera estimates were less dependent on clustering methods and 
significantly outperformed estimates by SCHISM with SDIndex (p<1E-16 by U test); Chimaera 
using hdbscan exhibited lower performance compared to other Chimaera runs (Figure 5A) but 
showed an increasing power in the percentage of mutations used to estimate the frequencies 
(Figure 5C).  

Inference accuracy, for both SCHISM and Chimaera, was anti-correlated with the level of 
genetic instability, which followed truncated normal distributions with varying means and 
variances (Figure 5B). To better understand mutation-level behaviour, as opposed to the 
genome-level comparisons in Figure 5C, we rescued individual mutations from each simulation 
and compared accuracy, mutation by mutation, as a function of their simulated copy numbers 
(Figure 5D). The result suggests similar Chimaera accuracy across copy numbers. We note 
that many mutations were eliminated from the evaluation by both the SCHISM and Chimaera 
pipelines with tclust based methods. In total, only ~60% of mutations were assigned 
frequencies by Chimaera with tclust and SCHISM; on the contrary Chimaera is these 
proportion were independent of mutation copy numbers. While Chimaera assigned frequencies 
to all clustered mutations, SCHISM did not successfully estimate mutation frequencies for 
some simulated genomes. Accuracy comparisons in Figure 5 were made using only those 
mutations that had assigned frequencies by all methods.  
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In its totality, our analysis suggests that, at least under our model, mutation frequency 
estimation is more challenging for genomes with high copy-number variability. Chimaera 
inference accuracy for simulated genomes where all mutations had consistently low or 
consistently high copy numbers was relatively high. This is in part due to Chimaera’s iterative 
process, where success in mutation clustering is followed by an optimization process that can 
correct for consistently high or consistently low mutation copy numbers. 

 

 

Figure 5. Accuracy on simulated data.  

(A) Accuracy of mutation-frequency estimates by AncesTree (purple), SCHISM (red) and 
Chimaera (green and blue) on simulated WES data from genomes with varying mutation 
copy numbers; SCHISM and Chimaera were evaluated using multiple clustering methods 
with SDIndex (SCHISM) and ElbowSSE (Chimaera) producing top accuracy, respectively, 
in blue are reported estimates for Chimaera using hdbscan. (C) Percentage of mutations 
processed applying the three different algorithms. It is evident how Chimaera using 
hdbscan outperforms clearly other methods, being able of considering over 80% of the 
mutations considered. (B) Accuracy was inversely correlated with genetic instability, which 
was measured here as the coefficient of variation of the distributions used to simulate CNVs 
in each simulated WES profile; SCHISM with SDIndex clustering outperformed AncesTree 
inferences. (D) Evaluated independently, mutation copy numbers had relatively little effect 
on Chimaera accuracy. We report results for Chimera using hdbscan and SCHISM with 
SDIndex (a representative that resembles results with other clustering methods). Standard 
errors are reported. Mean Error is the mean of L1 distances between true and estimated 
mutation frequencies after normalizing for the number of biopsies. 
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Chapter 5 Clonality analysis 

To test our methods, we analysed profiles from HCC and CRPC samples. We report on our 
HCC analysis below, and summarize analysis of our CRPC samples. More in depth treatment 
of CRPC subclones will be available in D1.3 and D2.4.  

HCCs are high-risk liver tumours that are known to have high genetic instability (TCGA, 2017). 
To test our ability to infer mutation frequencies and ancestral relations between subclones 
using clinical data, we studied the profiles of nine HBV-positive HCC patients, with each tumour 
profiled in 5 areas (Lin et al., 2017). In total, we obtained mutated-read fractions and CNV 
estimates for 1,424 mutation candidates in 9 tumours and 43 tumour samples, while 7 tumours 
were profiled in 5 areas each, profiles from only 4 areas of tumours HCC5647 and HCC8716 
passed quality control.  

Chimaera inferred frequencies estimates for 60% (858/1424) of all mutations, reconstructing 
phylogenetic trees for each tumour sample and predicting initiating clones and clones that are 
associated with a proliferative advantage; see representative trees in Figure 6. To compare, 
SCHISM inferred mutations frequency for only 10% of mutation candidates. Interestingly, 78% 
(7/9) of the tumors included predicted initiating mutations in WNT-signalling pathway genes. 
An examination of 102 TCGA-profiled HBV-positive HCCs  (TCGA, 2017) suggested that 74% 
(75/102) of samples carried mutations in WNT-signalling pathway genes, and the majority of 
these samples (76%) had WNT-signalling pathway mutations with mutated-read fractions 
above 25%—corresponding to mutations that are potentially present in the majority of cells. 
To test whether WNT-signalling pathway genes were enriched for mutations—and particularly 
mutations with mutated-read fractions above 25%—we calculated the proportion of tumours 
with such mutations in each of 186 KEGG pathways in MSigDB (Liberzon et al.). The top 10 
pathways by p-value and mutated-sample fraction is given in Table 1. P-values were estimated 
using permutation testing, where for each pathway, random same-size gene sets were 
generated using KEGG pathway genes, and the mutated-sample fraction taken to generate a 
null distribution. WNT-singling was our top pathway for enrichment of mutations with mutated-
read fractions above 25% or for any mutated-read fraction. To correct for the shadow effect 
(Roy et al., 2014), where pathways that overlap a pathway that is mutated in many samples 
are also significant, we recalculated enrichment significance for each pathway after excluding 
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Figure 6: Predicted phylogenies in HBV-positive HCCs 
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WNT-signalling pathway genes, and note that MAPK-signalling and 2 other top-10 pathways 
were still enriched (Table 1).  

CRPC analysis. In total, 72 CRPC samples corresponding to 5 CRPC patients were profiled, 
including a control for each patient. Profiled samples, including profiling time points, Gleason 
scores, and therapeutic history are given in Table S11. Our analysis were used to infer tumour 
phylogenies, including the order of the emergence of dominant tumour subclones in these 5 
patients (Patient 1-5).  

Patient 1 was profiled at 3 time points across 2.3 years, and was assessed mutually disjoint 
mutations in EP300 and AR, corresponding to 2 distinct proliferative tumour subclones. The 
clonal EP300 mutation (p.I997V) is predicted to be deleterious and was inferred to be present 
in the majority of tumour cells at Time point 1. The well documented pathogenic mutation AR 
p.T878A was detected at Time point 2 and its detection coincided with a loss of the EP300 
mutation and an increase in the tumour’s Gleason Score. At Time point 3, regions that were 
positive for the AR mutation tested negative for the EP300 mutation. 

Patient 2 was profiled at 5 time points across 1.8 years and was assessed the known 
pathogenic stop-gain mutation PTEN p.R303X at Time point 1 in addition to a heterozygous 
loss of RB1. At Time point 1, PTEN p.R303X was inferred in nearly all tumour cells. Following 
treatment with a luteinizing hormone releasing hormone (LHRH) analogue, this patient gained 
a mutation in BRCA2 (p.N372H) and then in EP300 (p.E1063Q); both were gained in Time 
point 4 and are predicted to be damaging. This coincided with an increase in Gleason score 
(5+4 to 5+5) and was followed by the introduction of the combination treatment LHRH and 
Casodex. Finally, Time point 5 profiles suggest that the BRCA2-EP300 significantly increase 
in proliferation and this tumour subclone, which was infrequent at Time point 4, expands and 
accounts for most of the tumour cells. 

Patient 3 was profiled at 2 time points and had an increase in Gleason score (5+4 to 5+5). This 
patient had a castrate resistant cancer and his therapy included orchiectomy 7 years prior to 
the first biopsy. His Chimaera inferred phylogeny suggested a dominant tumour subclone with 
a heterozygous loss of RB1 together with previously-observed pathogenic PTEN nonsense 
(p.Q245) and BRCA1 (p.E1038G) mutations. This subclone later acquired mutations in PALB2 

                                                

1 Separate confidential document: PrECISE-D1.2-M36-Table-S1-CO.xlsx  

Table 1: The 10 most enriched pathways for mutations with mutated-read fractions greater than 25% 
(high-frequency mutations) in TCGA-profiled virus-positive HCCs. Pathways were sorted by p-values 
followed by the proportion of patients with a high-frequency mutations in at least one pathway gene. 
P-values were estimated using permutation testing based on all expressed genes in 186 KEGG 
pathways; here, for each pathway and given the number of pathway genes (Genes, in the table 
below), each permutation test selected that number of genes uniformly at random and calculated the 
fraction of patients with a mutation in one of these genes. The same test was conducted after 
excluding WNT-signalling genes to establish independence from WNT-pathway signalling. 
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(p.E672Q) and TP53 (p.V41G; predicted to be deleterious), followed by BRCA2 (p.N372H; 
previously observed) and a stop-gain mutation in BRIP1 (p.R798X). All of these mutations 
were present at Time point 1. 

Phylogenies inferred for Patients 4 and 5 were simpler. Patient 4’s phylogeny included a 
sequence of 5 intronic and synonymous mutations with unknown significance in TMPRSS2. 
While Patient 5’s phylogeny included a predicted initiating mutation in PIK3CA (p.Y182H); see 
Table S1 for all mutation frequency data.  
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Chapter 6 Summary and Conclusion 

We developed a method to infer mutation frequencies in genomically unstable cancers and 
used it to infer tumour subclones in prostate and other cancers. Our analysis of alterations in 
prostate cancers identified mutations associated with initiating tumour subclones as well as 
tumour subclones that respond or are resistant to therapies. Our study demonstrates how 
tumour profiles that consider multiple areas and time points during tumour evolution can help 
reveal the ordinal relationship between subclones and their responses to therapies. 
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