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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the 

information is fit for any particular purpose. The users thereof use the information at their sole risk and 
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Executive Summary 

Literature curated information on protein interactions is an extremely valuable resource for 
researchers studying different biological questions. These resources can help in the 
generation of hypothesis to explain experimental data and they provide support for the 
building of computational models. However, the existing curated information is currently 
distributed throughout a large number of online resources, making gathering and retrieving 
this information in a consistent manner a non-trivial endeavour. 

This document gives an overview of the Omnipath database and its accompanying Python 
module Pypath. Omnipath gathers 55 resources, including 27 high-confidence literature 
curated signaling resources, providing and easy, unified and convenient entry point to much 
of the protein interaction knowledge available. 

Overall, Omnipath and Pypath greatly facilitate the integration and extraction of biological 
prior knowledge for analysis and model building, and they can be incorporated into wider 
data processing pipelines. Pypath and Omnipath are available at http://omnipathdb.org. 

As requested during the revision of the deliverable, we have revised the document attending 
to the resources mentioned in Task 3.1. The introduction has been updated and a new table 
listing the resources accessible using Omnipath has been included.  
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Chapter 1 Introduction 

Knowledge about protein interactions, backed up by experimental evidence, is a precious 
resource in biological research. Researchers can come up with new plausible hypothesis that 
can explain observed biological phenomena starting from this type of knowledge. In addition, 
they can build sensible computational models grounded on evidence based interaction 
networks, which can later give rise to new testable predictions. It also constitutes a 
benchmark against which interaction prediction algorithms can be tested. This type of data 
can be found currently in different online resources, however, gathering and retrieving 
information from all of them in a consistent manner is anything but trivial. 

With the aim to facilitate the access to this information, UKAACHEN started the development 
of the Omnipath database (Türei et al. (2016)). During PrECISE, development in this 
resource continued, polishing the integration of the different resources (i.e. detecting and 
solving errors and adding new functionalities) and developing documentation showing some 
of its possibilities. UKAACHEN introduced this resource to other partners and publicized it in 
conferences. Interaction with other partners, like TUDA, IBM and CI, informed on some of the 
desired functionalities and helped to test the software. 

The Omnipath database gathers 55 different resources, including 27 high-confidence 
literature curated signaling resources. In addition, it also provides access to other resources 
containing annotation and other kinds of information. These include post-translational 
modifications (PTMs), protein complexes, expression data, drug-target relationships or Gene 
Ontology annotations. Among these resources we find STRING, Human Protein Reference 
Database (HPRD), PhosphoSitePlus and ACSN. A list of resources is given in Table 1. 

Furthermore, Omnipath comes with an accompanying Python module called Pypath. This 
software enhances the Omnipath database with several expansion and analysis 
functionalities. New interactions can be loaded and merged with the existing ones and 
multiple graph analysis methods are available right away. These analysis methods range 
from different network statistics calculations to shortest path searches. All of them facilitate 
the search and extraction of subnetworks of interest by filtering nodes and edges according 
to different criteria, speeding up this way the process of building and curating signaling 
pathway models. 

Although Omnipath and Pypath by themselves do not constitute a completely automated way 
of getting a final biologically meaningful network starting from a list of proteins, they provide 
the basis for a computational pipeline capable of doing so. In fact, there might be several 
different ways of achieving that goal, and Omnipath and Pypath can give support to all of 
them. Moreover, they also fit into a more traditional manual curation pipeline, easing the 
process of information search and integration. 

This document focuses on different practical use cases of Omnipath and Pypath. By using 
prostate cancer as an example, we show how Omnipath and Pypath can help to answer 
common questions around protein interactions and signaling networks. Overall, we establish 
a computational pipeline for the extraction of prior knowledge information around protein 
interactions. 
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Database Category Subcategory 

ACSN Literature curated Reaction 

AlzPathway Literature curated Pathway 

ARN Literature curated Pathway 

Ataxia High-throughput Interaction 

Awan 2007 Literature curated Pathway 

BioCarta Literature curated Pathway 

BioGRID High-throughput Interaction 

Ma'ayan 2005 Literature curated Pathway 

CancerCellMap Literature curated Interaction 

CARFMAP Literature curated Pathway 

ConsensusPathDB Literature curated Pathway 

CORUM Literature curated Complexes 

CST Pathways Literature curated Pathway 

Cui 2007 Literature curated Pathway 

dbPTM Literature curated Ptm 

DeathDomain Literature curated Pathway 

DEPOD Literature curated Post-translational 
modification 

DIP Literature curated Interaction 

DOMINO Literature curated Ptm 

ELM Literature curated Post-translational 
modification 

Guide to 
Pharmacology 

Literature curated Pathway 

HPRD Literature curated Post-translational 
modification 

HumanSignalingNet
work 

Literature curated Pathway 
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Database Category Subcategory 

HuPho High throughput and literature curated Post-translational 
modification 

InnateDB Literature curated Interaction 

IntAct Literature curated and high-throughput Interaction 

KEGG Literature curated Reaction network 

Laudanna Combined Mixed 

Li 2012 High-throughput Yeast 2 hybrid 

Lit-BM-13 High-throughput Yeast 2 hybrid 

LMPID Literature curated Post-translational 
modification 

Macrophage Literature curated Pathway 

MatrixDB Literature curated Interaction 

MINT Literature curated and high-throughput Interaction 

MPPI Literature curated Interaction 

NCI-PID Literature curated Reaction network 

Negatome Literature curated Negative 

NetPath Literature curated Reaction network 

NRF2ome Literature curated Pathway 

PANTHER Literature curated Reaction network 

PathwayCommons Combined Interaction 

PDZBase Literature curated Pathway 

phospho.ELM Literature curated Ptm 

PhosphoPoint Literature curated and prediction Post-translational 
modification 

PhosphoSite Literature curated and high-throughput Post-translational 
modification 

Reactome Literature curated Reaction network 

SignaLink Literature curated Pathway 
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Database Category Subcategory 

Signor Literature curated Pathway 

SPIKE Literature curated Pathway 

STRING High-throughput and prediction Interaction 

TLR Literature curated Model 

TRIP Literature curated Pathway 

Vidal HI-III High-throughput Yeast 2 hybrid 

WikiPathways Literature curated Reaction network 

Zaman 2013 Literature curated Pathway 

 Table 1. Databases integrated in Omnipath. For a description of each resource, see 
http://omnipathdb.org/info. 
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Chapter 2 Preliminaries 

Omnipath and Pypath are available at http://omnipathdb.org. The Omnipath database can be 
accessed directly from the website through a REST style API, but it is also supported by the 
Python package Pypath, which provides useful features for expansion and analysis of the 
networks. This document will make extensive use of the Pypath Python module.  

Omnipath can be installed with pip (a Python module that eases the process of installing 
other packages) directly from the GitHub repository with the following command: 

pip install git+git://github.com/saezlab/pypath.git 

On some systems, however, it may be challenging to get it working due to the somewhat 
complicated installation of other programs on which the Pypath module depends (for 
example, the Cairo library on OS X systems). Omnipath’s website provides instructions on 
how to install the software on different systems. However, unexpected issues may arise. In 
those cases, users are encouraged to contact omnipath@googlegroups.com. 

Omnipath and Pypath will be updated regularly. Previous releases of the package can be 
found at http://pypath.omnipathdb.org/releases/archive/. Although in the future some 
functions and features (or their syntax) may change, the general concepts and ideas 
introduced in this document will remain valid. This document was developed with Pypath 
version 0.3.12. To install a previous version of the software, download the tar.gz file from the 
link mentioned above (e.g. pypath-0.3.12.tar.gz) and run the following command line from the 
folder containing the file: 

pip install pypath-0.3.12.tar.gz 

mailto:omnipath@googlegroups.com
http://pypath.omnipathdb.org/releases/archive/


D3.1 - Computational pipeline to extract prior network information   

PrECISE D3.1 Page 6 of 23 

Chapter 3 Omnipath overview 

The starting point for retrieving prior knowledge interaction information is usually a list of 
proteins we are interested in. In the frame of the PrECISE project, there are 5 genes we are 
specially interested in given that they are frequently altered in prostate cancer:  

 PTEN 

 FOXA1 

 TP53 

 SPOP 

 AR  

We are going to use these 5 genes to show how can we retrieve information around them 
using Omnipath and Pypath. 

3.1 ID conversion 

Pypath comes with a mapping module that allows translating gene symbols to Uniprot 
identifiers, among others. For example, to get the Uniprot IDs linked to our 5 genes of 
interest we could use the following code: 

from pypath import mapping 

m = mapping.Mapper() 

query_genes = set(['PTEN', 'FOXA1', 'TP53', 'SPOP', 'AR']) 

for i_gene in query_genes: 

    prot_id = m.map_name(i_gene, 'genesymbol', 'uniprot')[0] 

    print("{}: {}".format(i_gene, prot_id)) 

 

The output that we obtain is as follows: 

 

FOXA1: P55317 

PTEN: P60484 

SPOP: O43791 

AR: P10275 

TP53: P04637 

 

The map_name() function returns a list just in case the identifier provided matches to more 

than one queried identifier type. In most cases, the matching is one to one, like in this 
example, but some genes may map to more than one protein or some protein may be coded 
by more than one gene. Being Omnipath a protein interaction network, the main ID is the 
Uniprot ID. When compiling the network, if we have information about interactions based on 
gene identifiers and some of them map to more than one protein, interactions will be 
assigned to all of them. 

3.2 Initializing the network 

The Omnipath database can be loaded in Python using the Pypath module. 

# load packages 
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import pypath  

pa = pypath.main.PyPath() 

pa.init_network() 

By default, 27 curated resources will be loaded, but we can select specific resources to be 
loaded or incorporate our own interaction lists. 

We can execute the following command to remove interactions that are only supported by 
papers reporting many interactions (which may be less curated than papers reporting just a 
low number of interactions). 

 
# remove links reported in papers with more than 50 interactions (by 

default) 

pa.remove_htp() 

 

The directed network can be constructed with the get_directed() function. This function 

takes advantage of some references explicitly supporting one specific direction. For those 
interactions without explicit directionality support, the interaction may be dropped (default 
behavior), assigned an arbitrary direction or added with a pair of opposite directed edges.  

pa.get_directed() 

 

3.3 Node neighbourhood exploration 

One of the first things we might want to know is what are the other proteins our proteins of 
interest interact with. 

query_nodes = set(['PTEN', 'FOXA1', 'TP53', 'SPOP', 'AR']) 

for igene in query_nodes: 

    # to query a node based on the value of an attribute we can use 

the igraph find() method 

    #prot = pa.graph.vs.find(label=i)['name'] 

    # if the attribute is the vertex label (genesymbol) we can use 

pypath's genesymbol() function 

    prot = pa.genesymbol(igene)['name'] 

    #neighbours_of_prot = pa.first_neighbours(prot) 

    neighbours_of_prot = list(pa.gs_neighbors(igene).gs()) 

    print('{} ({}) has {} neighbours:'.format(igene, prot, 

len(neighbours_of_prot))) 

    if len(neighbours_of_prot)<10: 

        print(neighbours_of_prot) 

    else: 

        print('(showing only 10 proteins)') 

        print(neighbours_of_prot[0:10]) 

    print('---') 

 

 

 

FOXA1 (P55317) has 4 neighbours: 

['AR', 'TLE1', 'NFIX', 'NFIB'] 

--- 

PTEN (P60484) has 50 neighbours: 

(showing only 10 proteins) 
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['AKT1', 'RELA', 'CDC42', 'EGR1', 'PPP1CA', 'CREB1', 'RAC1', 'ROCK1', 

'CTNNB1', 'AR'] 

--- 

SPOP (O43791) has 4 neighbours: 

['TRAF6', 'H2AFY', 'DAXX', 'CUL3'] 

--- 

AR (P10275) has 245 neighbours: 

(showing only 10 proteins) 

['AKT1', 'KDM3A', 'GTF2H3', 'GTF2H2', 'B3KNJ3', 'BAG1', 'AHR', 

'CDK5', 'SVIL', 'IARS'] 

--- 

TP53 (P04637) has 271 neighbours: 

(showing only 10 proteins) 

['HDAC2', 'MAML1', 'CDK5', 'KDM1A', 'XPO1', 'BAD', 'DDX5', 'SIRT1', 

'CCNA2', 'RELA'] 

--- 

 

Because these nodes are not necessarily connected between each other, we can find a way 
to connect them supported by literature evidence in order to get a unique network. One of the 
possibilities is to use the shortest paths between our genes of interest. For example, we may 
try to connect SPOP to FOXA1, two of the nodes with the least number of neighbours:  

# find shortest path between SPOP and FOXA1 

path = pa.graph.get_shortest_paths(pa.genesymbol('SPOP')['name'], 

to=pa.genesymbol('FOXA1')['name']) 

# the result is returned as a list with a single element 

path = path[0] 

 

path_SPOP_to_FOXA1_length = len(path)-1 

print('The path from SPOP to FOXA1 has {} 

steps:'.format(path_SPOP_to_FOXA1_length)) 

print('\t' + ' --> '.join(pa.graph.vs[i]['label'] for i in path)) 

 

 

The path from SPOP to FOXA1 has 4 steps: 

 SPOP --> TRAF6 --> AKT1 --> AR --> FOXA1 

 

Of course, the shortest path that connects two nodes might not be unique.  

# find all paths between SPOP and FOXA1 (of length equal to the 

shortest path length) 

 

# to find the index based on the value of an attribute we can use 

igraph's select() function 

#node_start = pa.graph.vs.select(label='SPOP').indices[0] 

#node_end = pa.graph.vs.select(label='FOXA1').indices[0] 

# or, if the attribute is the gene symbol, we can use pypath's 

genesymbol() function 

node_start = pa.genesymbol('SPOP').index 

node_end = pa.genesymbol('FOXA1').index 

 

paths = pa.find_all_paths(start=node_start, end=node_end, 

maxlen=path_SPOP_to_FOXA1_length) 

print('Number of paths: {}'.format(len(paths))) 
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 :: Looking up all paths up to length 4: finished, 100.0% 

Number of paths: 20 

  
p = [item for sublist in paths for item in sublist] 

p = set(p) 

print('Number of nodes: {}'.format(len(p))) 

 

Number of nodes: 25 

 

In this case, we have 20 paths of length 4 that can connect SPOP and FOXA1. These paths 
involve 25 nodes. We could decide to prioritize these paths based on the references 
supporting each link involved in them, or by including experimental information (e.g. 
proteomics or transcriptomics data) to hypothesize what paths are more likely than others, 
for example. 

We can extract and plot the network spanned by these nodes 

import igraph  # import igraph to use the plot function 

# Load the ipython display and image module 

from IPython.display import Image 

from IPython.display import display 

 
# extract graph expanded by the nodes included in the path 

connection_graph = pa.graph.induced_subgraph(p) 

  

plot2 = igraph.plot(connection_graph, 

layout=connection_graph.layout_auto(), **visual_style) 

plot2.save('connection_SPOP_FOXA1.png') 

display(Image('connection_SPOP_FOXA1.png')) 

 

Figure 1. Network composed by all the nodes that participate in all the paths of length 4 between 
SPOP and FOXA1. 

 

In summary, we can get a prior knowledge network that connects our nodes of interest 
following this strategy and use other methods to refine it. 
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Figure 2. Network obtained by connecting all our genes of interest with one shortest path between 
pairs of nodes (left) or with all possible shortest paths (right). 

 

The accompanying document node_neighbourhood.html is a rendered IPython Notebook 
that contains code and output corresponding to this analysis with some additional 
observations.  

3.4 Pathway extraction 

Omnipath includes pathway annotations from different databases (Kegg, Signalink, Signor, 
Netpath). We can have a look into what pathways are our genes of interest annotated to and 
see if there is one connecting all of them. 

pa.load_all_pathways() 

for igene in query_nodes: 

    print(igene) 

    print(pa.gs(igene)['kegg_pathways']) 

    print(pa.gs(igene)['signalink_pathways']) 

    print(pa.gs(igene)['signor_pathways']) 

    print(pa.gs(igene)['netpath_pathways']) 

    print('---') 

 

 

 

FOXA1 

set([]) 

set([]) 

set([]) 

set([u'Androgen receptor (AR)']) 

--- 

PTEN 

set([u'Phosphatidylinositol signaling system', u'Sphingolipid 

signaling pathway', u'Focal adhesion', u'Tight junction', u'Hepatitis 

B', u'FoxO signaling pathway', u'p53 signaling pathway']) 

set(['HH', 'TNF/Apoptosis', 'WNT', 'RTK', 'IIP']) 

set([u'MTOR Signaling', u'Insulin Receptor']) 

set([u'Androgen receptor (AR)']) 

--- 

SPOP 
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set([]) 

set(['HH', 'JAK/STAT']) 

set([]) 

set([]) 

--- 

AR 

set([u'ErbB signaling pathway', u'Pathways in cancer', u'Hippo 

signaling pathway']) 

set(['IIP', 'autophagy']) 

set([]) 

set([u'Androgen receptor (AR)', u'Interleukin-6 (IL-6)', u' 

Transforming growth factor beta (TGF-beta) receptor ', u'Alpha6 Beta4 

Integrin']) 

--- 

TP53 

set([u'HTLV-I infection', u'Melanoma', u'Bladder cancer', 

u'Sphingolipid signaling pathway', u'Chronic myeloid leukemia', 

u'Proteoglycans in cancer', u'Apoptosis', u'Neurotrophin signaling 

pathway', u'Cell cycle', u'p53 signaling pathway', u'Viral 

carcinogenesis', u'PI3K-Akt signaling pathway', u'Pathways in 

cancer', u'Hepatitis B', u'Hepatitis C', u'Longevity regulating 

pathway - mammal', u'Wnt signaling pathway', u'Prostate cancer', 

u'Thyroid hormone signaling pathway', u'Glioma', u'MAPK signaling 

pathway', u'Epstein-Barr virus infection', u'Measles']) 

set(['Notch', 'TNF/Apoptosis', 'IIP', 'RTK', 'autophagy']) 

set([u'Mitochondrial Control of Apoptosis', u'P38 Signaling', 

u'AcuteMyeloidLeukemia']) 

set([u' Transforming growth factor beta (TGF-beta) receptor ']) 

--- 

Taking a look at the list of pathways each node participates in, we can find a set that connect 
all of them. For example, 'Androgen receptor (AR)' of 'netpath', 'HH' of 'signalink' and 
'Transforming growth factor beta (TGF-beta) receptor' of 'netpath'. We can use this 
information to extract another prior knowledge interaction network based on these pathways. 

  

connector_pathways = {'signalink_pathways': set(['HH']),  

                      'netpath_pathways': set([u'Androgen receptor 

(AR)',  

                                               u' Transforming growth 

factor beta (TGF-beta) receptor '])} 

 

filter_func = [] 

filter_func.append(lambda vertex: 'HH' in 

vertex['signalink_pathways']) 

filter_func.append(lambda vertex: u'Androgen receptor (AR)' in 

vertex['netpath_pathways']) 

filter_func.append(lambda vertex: u' Transforming growth factor beta 

(TGF-beta) receptor ' in vertex['netpath_pathways']) 

 

connector_node_list = pa.graph.vs.select(lambda vertex: any(i(vertex) 

for i in filter_func)) 

 

connector_subgraph = pa.graph.induced_subgraph(connector_node_list) 

print('Number of nodes: {}'.format(connector_subgraph.vcount())) 

print('Number of edges: {}'.format(connector_subgraph.ecount())) 
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Number of nodes: 358 

Number of edges: 1562 

 

 

Figure 3. Network obtained by extracting all the interactions between the nodes annotated in the 
'Androgen receptor (AR)' of 'netpath', 'HH' of 'signalink' and 'Transforming growth factor beta (TGF-

beta) receptor' of 'netpath'. 

 

The accompanying document Pathway_extraction.html is a rendered IPython Notebook 
that contains code and output corresponding to this section.  

 

3.5 Protein complex extraction 

Omnipath also provides access to databases reporting protein complexes, such as CORUM 
(http://mips.helmholtz-muenchen.de/genre/proj/corum). Again, if we want to know if our 
genes of interest are annotated to participate in some protein complex, we just need to load 
the database and make some queries. 

  
# load CORUM database (http://mips.helmholtz-

muenchen.de/genre/proj/corum) 

pa.load_corum() 

for i_node in query_nodes: 

    i_complex_list = pa.gs(i_node)['complexes']['corum'].keys() 

    if len(i_complex_list)>0: 

        print("Gene {} is reported in the following complexes in the 

CORUM database:".format(i_node)) 

        for i in i_complex_list: 

            print("\t{}".format(i)) 

http://mips.helmholtz-muenchen.de/genre/proj/corum
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    else: 

        print("Gene {} is not reported to belong to any protein 

complex in the CORUM database".format(i_node))   

    print("---") 

 

 

 

Gene FOXA1 is not reported to belong to any protein complex in the 

CORUM database 

--- 

Gene PTEN is not reported to belong to any protein complex in the 

CORUM database 

--- 

Gene SPOP is reported in the following complexes in the CORUM 

database: 

 Ubiquitin E3 ligase 

--- 

Gene AR is reported in the following complexes in the CORUM database: 

 AR-AKT-APPL complex 

 AOF2-AR complex 

--- 

Gene TP53 is reported in the following complexes in the CORUM 

database: 

 CNS-P53 complex 

 p300-MDM2-p53 protein complex 

 FHL2-p53-HIPK2 complex 

 Axin-p53-HIPK2 complex 

 P53-BARD1-Ku70 complex 

 DAXX-Axin-p53-HIPK2 complex 

 hSIR2-p53 complex 

 FOXO3-TP53 complex, oxidative stress stimulated 

 YY1-MDM2-p53 complex 

 Daxx-Axin-p53 complex 

 p53-BCL2 complex 

 p53-SP1 complex 

 NUMB-TP53-MDM2 complex 

 MSH2/6-BLM-p53-RAD51 complex 

 p53 homotetramer complex 

 Er-alpha-p53-hdm2 complex 

--- 

 

We can check the details of these complexes, for instance, the Ubiquitin E3 ligase complex 
in which SPOP participates. 

 
prot_complex_details = pa.gs("SPOP")['complexes']['corum']['Ubiquitin 

E3 ligase'] 

prot_complex_details 

 

 

{'all_members': [u'Q13618', u'Q9UER7', u'O43791'], 

 'all_members_original': [u'Q13618', u'Q9UER7', u'O43791'], 

 'diseases': u'', 

 'full_name': u'Ubiquitin E3 ligase (SPOP, DAXX, CUL3)', 

 'functions': u'Ubiquitin E3 ligases covalently attach ubiquitin to a 

lysine residue on a target protein. Polyubiquitination marks proteins 
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for degradation by the proteasome. SPOP serves as an adaptor of Daxx 

for the ubiquitination by Cul3-based ubiquitin ligase and subsequent 

degradation by the proteasome. Experiments suggest that SPOP/Cul3-

ubiquitin ligase plays an essential role in the control of Daxx level 

and, thus, in the regulation of Daxx-mediated cellular processes, 

including transcriptional regulation and apoptosis.', 

 'references': [u'16524876']} 

 

The references field contains the pmid of the article supporting this complex. We can query 

some details of it with the following code:  

ref_pmid = prot_complex_details['references'][0] 

pypath.main.Reference(ref_pmid).info() 

# we can also open the webpage with the article abstract in a 

separate window with the following command 

# pypath.main.Reference(ref_pmid).open() 

 

The accompanying document protein_complex_extraction.html is a rendered IPython 
Notebook that contains code and output corresponding to this section.  

 

3.6 Transcription Factors and surface receptors  

Apart from pathway annotations, Omnipath also supports Gene Ontology annotations. We 
can use them for several purposes, for example, locating transcription factors and surface 
receptors. 

# load go annotations: 

pa.load_go() 

  

# get the GO annotation: 

pa.go_dict() 

  
Some GO terms that may be useful: 

(C) transcription factor complex 

(C) transcriptional repressor complex 

(P) cell surface receptor signaling pathway 

( ) plasma membrane receptor complex 

(C) plasma membrane 

(C) cell surface 

  

We can use one term to filter the nodes. 

tf = pa.dgraph.vs.select(lambda vertex: 

pa.go[9606].get_term('transcription factor complex') in 

vertex['go']['C']) 

tfr = pa.dgraph.vs.select(lambda vertex: 

pa.go[9606].get_term('transcriptional repressor complex') in 

vertex['go']['C']) 

print('Number of nodes annotated as \'transcription factor complex\': 

{}'.format(len(tf))) 
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print('Number of nodes annotated as \'transcriptional repressor 

complex\': {}'.format(len(tfr))) 

# Note: some nodes may be annotated with both GO terms 

print('Number of nodes annotated with any of the two terms above: 

{}'.format(len(set(tf['label']+tfr['label'])))) 

 

 

Number of nodes annotated as 'transcription factor complex': 124 

Number of nodes annotated as 'transcriptional repressor complex': 37 

Number of nodes annotated with any of the two terms above: 155 

 

Or we can filter the nodes according to several terms as well. For example, we can try to 
locate all the nodes corresponding to cell membrane proteins located in its surface. 

filter_func = lambda vertex: pa.go[9606].get_term('cell surface') in 

vertex['go']['C'] and pa.go[9606].get_term('plasma membrane') in 

vertex['go']['C'] 

pm = pa.dgraph.vs.select(filter_func) 

print('Number of nodes annotated with \'cell surface\' and \'plasma 

membrane\': {}'.format(len(pm['label']))) 

 

Number of nodes annotated with 'cell surface' and 'plasma membrane': 

215 

 

However, Pypath also provides some specific methods to locate transcription factors and 
receptors. 

  
pa.set_transcription_factors() 

pa_tf = pa.transcription_factors() 

pa_tf = pa.graph.vs.select(lambda vertex: vertex['tf'] is True) 

 

pa.set_receptors() 

pa_rec = pa.graph.vs.select(lambda vertex: vertex['rec'] is True) 

The accompanying document TF_location.html is a rendered IPython Notebook that 
contains code and output corresponding to this section.  

3.7 Negatome database 

The Negatome database (http://mips.helmholtz-muenchen.de/proj/ppi/negatome/) contains 
information on experimentally supported non-interacting protein pairs. In other words, the 
interactions loaded with this database represent interactions that do not occur according to 
lab experiments. This can be very useful information in different scenarios. For loading it we 
can use Pypath’s load_resources() function. 

pa.load_resources(lst=pypath.data_formats.negative) 

 

If we load this resource after loading Omnipath, the edges in the graph will consist of both, 
interactions supported by the literature and non-existent interactions according to Negatome. 
We can get the list of edges coming from the Negatome database with the following line of 
code: 

http://mips.helmholtz-muenchen.de/proj/ppi/negatome/
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negatome_edge_list = pa.graph.es.select(lambda edge: 'Negatome' in 

edge['sources']) 

 

An interesting question is whether there are edges with contradictory evidence, i.e. with 
support in the literature and also listed in Negatome. 

n_sources = np.array([len(i) for i in negatome_edge_list['sources']]) 

print('Number of edges with contradictory evidence: 

{}'.format(np.sum(n_sources>1))) 

 

Number of edges with contradictory evidence: 127 

 

We can have a closer look at one of this contradictions and look into the references reporting 
it to decide whether the interaction can really take place or not. 

contradictory_edges = negatome_edge_list.select(lambda edge: 

len(edge['sources'])>1) 

i_contradictory_edge = contradictory_edges[0] 

i_source_label = pa.graph.vs[i_contradictory_edge.source]['label'] 

i_target_label = pa.graph.vs[i_contradictory_edge.target]['label'] 

print(' == '.join([i_source_label, i_target_label])) 

print('Sources: ' + ', '.join(i_contradictory_edge['sources'])) 

 
AKT1 == TSC1 

Sources: Negatome, SPIKE 

 

We can open the paper supporting this non-interaction for a more in-depth evaluation. 

contradictory_ref = 

i_contradictory_edge['refs_by_source']['SPIKE'][0] 

contradictory_ref_info = 

contradictory_ref.info()[contradictory_ref.pmid] 

contradictory_ref.open()  # opens reference in pubmed 

 

The accompanying document Negatome_loading.html is a rendered IPython Notebook that 
contains code and output corresponding to this section.  
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Chapter 4 Prior-Knowledge Network building 

In some cases, we might want to have a prior-knowledge network with the aim of simulating 
some experimental data. For example, Lescarbeau et al. (2014) provide a phosphoproteomic 
dataset in prostate cancer cell lines under different perturbations and time points. 

Table 2 provides a list of phosphoproteins considered of interest in Lescarbeau et al. (2014). 
Here we have to take one thing into account: the names assigned to phosphoproteins might 
not be standard names, and thus it may be tricky to find the correct match in terms of the 
Uniprot ID or the gene symbol, which are the main entry point to Omnipath and Pypath. At 
the moment, knowledge about the experiment and the system being studied is probably the 
best way to find the correct matches.  

We can use several of the techniques discussed in the previous chapter to extract our prior-
knowledge network. The first thing we can do is, having our list of proteins stored in the 
variable query_set_d, retrieve all the links reported in the directed network. 

query_set_dnetwork = pa.dgraph.induced_subgraph(query_set_d) 

print('Number of edges: {}'.format(query_set_dnetwork.ecount())) 

print('Number of nodes: {}'.format(query_set_dnetwork.vcount())) 

 

Number of edges: 104 

Number of nodes: 34 

 
And we can check if there is any node or group of nodes not connected to the rest by 
querying the connected components of the network. 
 

# extract connected components using igraph's clusters() function 

# here mode='weak' instead of the default value 'strong' 

query_set_dclusters = query_set_dnetwork.clusters(mode='weak') 

n_dclusters = len(query_set_dclusters) 

print('Number of connected components: {}'.format(n_dclusters)) 

for i in xrange(n_dclusters): 

    print('\tComponent {} size: {}'.format(i, 

len(query_set_dclusters[i]))) 

 

 

Number of connected components: 5 

 Component 0 size: 29 

 Component 1 size: 2 

 Component 2 size: 1 

 Component 3 size: 1 

 Component 4 size: 1  

  

 

for i in range(1, n_dclusters): 

    print('Genes in component {}:'.format(i)) 

    print(query_set_dnetwork.vs[query_set_dclusters[i]]['label']) 

 

 

Genes in component 1: 

['IL6R', 'IL6'] 
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Genes in component 2: 

['TUBB'] 

Genes in component 3: 

['MAPK10'] 

Genes in component 4: 

['MAPK13']  

 
 

Phosphoprotein Gene Measured Stimulated 

Erk1 MAPK3 1 0 
Erk2 MAPK1 1 0 
Akt1 AKT1 1 0 
Akt2 AKT2 1 0 
Akt3 AKT3 1 0 
RPS6 RPS6 1 0 
GSK3a GSK3A 1 0 
GSk3b GSK3B 1 0 
p38d MAPK13 1 -1 
JNK1 MAPK8 1 0 
JNK2 MAPK9 1 0 
JNK3 MAPK10 1 0 
HSP27 HSPB1 1 0 
Stat3 STAT3 1 0 
IGF-1 IGF1 0 1 
IL6 IL6 0 1 
EGF EGF 0 1 
TNFa TNF 0 1 
Docetaxel - 0 1 
DHT - 0 1 
PI3K PIK3CA 0 -1 
mTOR MTOR 0 -1 
MEK MAP2K1 0 -1 
IKKa CHUK 0 -1 
IKKb IKBKB 0 -1 
b-Tubulin TUBB 0 0 
AR AR 0 0 
IGF1-R IGF1R 0 0 
b-Catenin CTNNB1 0 0 
IL6R IL6R 0 0 
Jak JAK1 0 0 
EGFR EGFR 0 0 
RAS KRAS 0 0 
Stress - 0 0 
Rac RAC1 0 0 
TNFR TNFRSF1A 0 0 
NF-kB NFKB1 0 0 

Table 2. List of phosphoproteins measured in Lescarbeau et al. (2014) and additional nodes 
considered of interest. The column stimulation takes the value 1, -1 or 0 depending on whether the 

node was stimulated with an activating agent, inhibited or not perturbed, respectively. 
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In the case of the unconnected node IL6R, if we look in the undirected network instead of in 
the directed one, we can see that it is connected to JAK1. The reason for not being 
connected in the directed network is that when getting a directed network, by default, only 
edges with an explicit reference to its directionality are kept. We can thus add this link 
manually to our network, as we are trying to get a single network that connects all the nodes 
and we have a reference for it (although without an explicit mention to its directionality). 

# add directed edge from IL6R to JAK1 

label_source = 'IL6R' 

label_target = 'JAK1' 

 

iprot_source = query_set_dnetwork.vs.find(label=label_source).index 

iprot_target = query_set_dnetwork.vs.find(label=label_target).index 

query_set_dnetwork.add_edge(iprot_source, iprot_target) 

 

# copy attribute values present in the undirected network 

original_attributes = pa.graph.es(pa.get_edge([pa.gs(label_source), 

pa.gs(label_target)]))[0].attributes() 

 

new_edge_id = query_set_dnetwork.get_eid(iprot_source, iprot_target) 

new_edge_pointer = query_set_dnetwork.es(new_edge_id)[0] 

 

for (ikey, ivalue) in original_attributes.iteritems(): 

    new_edge_pointer[ikey] = ivalue 

 

For connecting the rest of the nodes, we might search paths to connect them to the nodes in 
the big connected component as suggested in the previous chapter. If we do it, we will 
observe that we are able to connect those isolated nodes to many other nodes in the big 
connected component just using one intermediary node not present in the list of queried 
nodes.  

Because here we are interested in extracting a network that could be used for simulation, we 
want to keep the network small, so we decide not to include all those possibilities. 
Furthermore, in Lescarbeau et al. (2014), they provide a diagram of the signaling pathway 
under study, so we can decide to include all these possible edges or only some of them 
based on that. For example, β-Tubulin (TUBB) is not connected to other nodes in the 
diagram. Also, JNK3 (MAPK10) may already be considered to be represented by JNK1 and 
JNK2 (MAPK8 and MAPK9 respectively). On the other hand, p38 (MAPK13) is connected to 
Rac (RAC1) and HSP27 (HSPB1) in the diagram. We can check one of the shortest paths 
that connects RAC1 to MAPK13 and another that connects MAPK13 to HSPB1. 

RAC1 --> PAK1 --> MAP2K3 --> MAPK13 

MAPK13 --> PRKD1 --> HSPB1 

To go from RAC1 to MAPK13 we need at least 3 steps in the directed network. We may 
decide, however, to add this connection nonetheless. In other words, we can decide to 
complete the network with the diagram provided in Lescarbeau et al. (2014) in mind. If the 
small network obtained this way does not explain the observations we can go back and 
consider other alternative wiring. We will leave TUBB and MAPK10 isolated for the moment 
too. 

Additionally, we might be interested in limiting the indegree of the nodes. The reason is that 
this may help in the process of fitting the model to the data in another later stage. We can 
always come back later and include alternative edges if the model we obtain does not fit the 
data appropriately. In this case, we have decided that we would like to limit the maximum 
indegree to 5. For achieving this, we need to discard some edges for those nodes with an 
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indegree higher than 5. To choose the edges to be discarded, one option is to check the 
number of references supporting each edge and discard those with the lowest support.  

# Add a new attribute to each vertex with its indegree 

pkn_network.vs['indegree'] = [i for i in pkn_network.indegree()] 

max_indegree = 5 

ids_edges_to_remove = [] 

for i_vertex in pkn_network.vs: 

    if i_vertex['indegree']>max_indegree: 

        edges_in = pkn_network.es.select(_target=i_vertex.index) 

        print(i_vertex['label']) 

        print("nrefs: " + ", ".join([str(i) for i in 

edges_in['nrefs']])) 

        #print("degree of source: " + ", 

".join([str(pkn_network.vs[i.source].degree()) for i in edges_in])) 

         

        # get the threshold of nrefs that leaves max_indegree edges 

or less 

        nrefs_list = np.array([e['nrefs'] for e in edges_in]) 

        nrefs_list.sort() 

        nrefs_threshold = nrefs_list[-(max_indegree+1)] 

        # get indices of edges to be removed 

        ids_edges_to_remove.extend([e.index for e in 

edges_in.select(nrefs_le=nrefs_threshold)]) 

        print("Suggested deletions: ") 

        for i_edge_to_remove in 

edges_in.select(nrefs_le=nrefs_threshold): 

            i_source_label = 

pkn_network.vs[i_edge_to_remove.source]['label'] 

            i_target_label = 

pkn_network.vs[i_edge_to_remove.target]['label'] 

            print('\t' + ' --> '.join([i_source_label, 

i_target_label])  + "\t({} refs)".format(i_edge_to_remove["nrefs"])) 

        print('---') 

         

 

AKT1 

nrefs: 8, 22, 1, 26, 11, 2, 4 

Suggested deletions:  

 TNF --> AKT1 (1 refs) 

 HSPB1 --> AKT1 (2 refs) 

--- 

CHUK 

nrefs: 8, 5, 7, 1, 2, 32, 2, 1, 1 

Suggested deletions:  

 TNF --> CHUK (1 refs) 

 AKT2 --> CHUK (2 refs) 

 MTOR --> CHUK (2 refs) 

 HSPB1 --> CHUK (1 refs) 

 AKT3 --> CHUK (1 refs) 

--- 

STAT3 

nrefs: 21, 18, 1, 9, 18, 17, 4 

Suggested deletions:  

 RAC1 --> STAT3 (1 refs) 

 MTOR --> STAT3 (4 refs) 

--- 
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EGFR 

nrefs: 2, 1, 15, 9, 15, 3 

Suggested deletions:  

 JAK1 --> EGFR (1 refs) 

--- 

CTNNB1 

nrefs: 2, 7, 8, 18, 1, 1, 1, 32, 2, 3 

Suggested deletions:  

 AKT1 --> CTNNB1 (2 refs) 

 NFKB1 --> CTNNB1 (1 refs) 

 AKT2 --> CTNNB1 (1 refs) 

 IKBKB --> CTNNB1 (1 refs) 

 GSK3A --> CTNNB1 (2 refs) 

--- 

NFKB1 

nrefs: 8, 1, 4, 2, 1, 8 

Suggested deletions:  

 CTNNB1 --> NFKB1 (1 refs) 

 AKT2 --> NFKB1 (1 refs) 

--- 

We should take into account that removing edges may have undesired consequences, such 
as disconnecting a node from the rest of the network. If this happens, we might decide not to 
delete some of these edges. In this case, we have no new disconnected nodes. 

pkn_network_v2 = pkn_network.copy() 

pkn_network_v2.delete_edges(ids_edges_to_remove) 

This last network, which could be further refined, contains 34 and 90 edges (Figure 4). 

   

Figure 4. Extracted directed prior knowledge network for nodes of interest in Lescarbeau et al 2014. 

The accompanying document lescarbeau_et_al_2014_neighbourhood.html is a rendered 
IPython Notebook that contains code and output corresponding to this chapter with some 
additional observations.  
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Chapter 5 Summary and Conclusion 

This document has given an introduction to Omnipath and Pypath, and how they can be 
used to address common tasks in prior knowledge retrieval. The different use cases 
presented on it show the various ways in which Omnipath and Pypath can help to build a 
computational pipeline for the extraction of prior knowledge protein interaction information. 

Following the pipeline presented in Chapter 4, members of the consortium are using 
Omnipath not only to extract the links reported in some of the 27 high confidence curated 
databases when a new protein is added to the network of prostate cancer (WP5), but also to 
update the network regularly with new links from recent publications. 

In summary, Omnipath and Pypath greatly facilitate the integration and extraction of 
biological prior knowledge for analysis and model building, and they can easily be 
incorporated into wider data processing pipelines. Omnipath and Pypath are available at 
http://omnipathdb.org. 
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