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Executive Summary 

A network representing the pathways and the genes or proteins known to be deregulated in 
prostate cancer was constructed. The network encompasses signaling pathways such as the 
cell cycle, cell death, androgen-receptor response, DNA repair, etc. The regulatory network 
shows the positive and negative influences that each entity of the network has onto the 
others. The entities can be genes, proteins, complexes, or processes and phenotypes. A 
series of inputs are chosen to account for the different conditions of the microenvironment: 
presence of growth factors, nutrients, or hypoxia, DNA damage, TNFalfa, etc. Some outputs 
are explicitly added to monitor the activity of some biomarkers of phenotypes: cell 
proliferation, apoptosis, quiescence, etc. For example, the variable Proliferation gets 
activated when at least one of the cyclins is ON. 

The network was built from knowledge extracted from publications, and databases, and 
completed by a tool developed by UKAACHEN, Omnipath, to query existing databases and 
complete semi-automatically the links and the neighbors of a gene to add in the regulatory 
network. 

From this network, a logical model is derived describing the network dynamics in specific 
contexts (dependent on initial conditions or perturbations for instance). Logical models are 
simple, require in principle no quantitative information, and can be hence applied to large 
networks combining multiple pathways. 

This deliverable presents some analyses made on this model. Some physiological conditions 
are first simulated in order to validate the model. The validation concerns both the choices 
made on the topology of the network (players and the interactions), and on those on the 
logical rules that are associated to each of the variable of the model. Then, some 
modifications of the wild type are explored, corresponding to mutants. The model still has to 
be validated on patient or clone profiles, and on data by performing some computations on 
the activity of pathways in the PC39 patients.  
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Chapter 1 Introduction 

1.1 Boolean modeling 

Like most cancers, prostate cancer arises from mutations on single somatic cells that induce 
deregulated proliferation, invasion of adjacent tissues, and metastasis. The high 
heterogeneity of tumor genetic and epigenetic profiles is explained by the large number of 
interacting proteins and the complex cross-talks between diverse cell signaling pathways that 
can be altered in cancer cells. 

Understanding the process of tumorigenesis and tumor growth requires a systemic and 
dynamical description of the disease, based on mathematical modeling. At the molecular 
level, this can be tackled by a simplified mechanistic cell-wide model of protein interactions in 
the underlying pathways, dependent on external environmental signals. 

Although continuous mathematical modeling has been widely used to study cellular 
biochemistry dynamics (e.g., ordinary differential equations), this formalism  faces limits for 
modeling a large-scale signaling network, due to the difficulty of estimating kinetic parameter 
values. In contrast, the logical modeling formalism represents a convenient mean of 
abstraction where the causal relationships between proteins (or genes) are encoded with 
logic statements, and dynamical behaviours are represented by transitions between discrete 
states of the system. This framework is flexible, requires in principle no quantitative 
information, and can be hence applied to large networks combining multiple pathways. It can 
also provide a qualitative understanding of molecular systems lacking mechanistic detailed 
information. 

 

Numerous uses of logical modeling so far have shown that this framework is able to 
delineate the main dynamical properties of complex biological regulatory networks (Fauré et 
al., 2006; Abou-jaoudé et al., 2011; Grieco et al., 2013), even with purely Boolean systems. 

In particular, Boolean models have been used to describe and predict the behavior of 
molecular networks affected in human disease (Fumia et al., 2013; Arshad et al., 2016). 

 

A logical model is defined by a regulatory graph, where each node represents a regulatory 
component, and is associated with discrete levels of activity (0, 1 and further integers when 
justified). Each arc represents a regulatory interaction between the source and target nodes, 
and is labelled with a threshold and a sign (positive or negative). The model is completed by 
logical rules (or functions), which assign a target value to each node for each regulator level 
combination. The resulting dynamics can be represented in terms of a state transition graph 
(STG), where the nodes denote the states of the system (i.e. vectors giving the levels of 
activity of all the variables) and the arcs represent state transitions (i.e. changes in variable 
values, according to the corresponding logical functions) (for more details, see Chaouiya et 
al., 2012; Abou-Jaoudé et al., 2016).  

When concurrent variable changes are enabled at a given state, the resulting state transition 
depends on the chosen updating assumption. Numerous studies use the simple fully 
synchronous strategy where all variables are updated through a unique transition. This 
assumption leads to relatively simple transition graphs and deterministic dynamics. The 
proportion of initial states leading to given attractors is measured as the attractor landscape 
(Helikar et al., 2008; Fumia et al., 2013; Cho et al., 2016).  
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However, the synchronous updating assumption approximation often leads to spurious cyclic 
attractors.  

On the other hand, the fully asynchronous updating assumption considers separately all 
possible transitions and therefore allows the consideration of alternative dynamics in the 
absence of kinetic data. The resulting dynamics has a branching structure which makes it 
more difficult to evaluate. 

In this project, we consider asynchronous dynamics mixed with stochastic simulations. 

The regulatory graph was constructed using GINsim software (Chaouiya et al., 2012), and 
then exported in a format readable by MaBoSS software (see below) in order to perform 
some stochastic simulations on the Boolean model.  

 

1.2 Stochastic simulations 

We use the software MaBoSS to compute Continuous Markov Chain simulations on the 
Boolean network. MaBoSS uses a specific language for associating transition rates to each 
node, enabling to account for different time scales of the processes described by the model. 
Given some initial conditions, MaBoSS applies Monte-Carlo kinetic algorithm (or Gillespie 
algorithm) to the network to produce time trajectories (Stoll et al., 2012). Time evolution of 
probabilities are estimated. 

Stochastic simulations allow to vary probabilities for initial states and inputs, and to measure 
the effect on the output probabilities. This provides a continuous intensity for each Boolean 
node. 

In addition, fixed points are computed, as well as entropy characterizations of the whole 
system, which is useful to indicate oscillating systems. Indeed, stochastic trajectories that 
have reached a complex attractor are progressively desynchronized until the mean 
probabilities of each node stabilizes at its mean level over the attractor. This phenomenon is 
differentiated from a fixed point by a non-null local entropy. 

Stochastic simulations with MaBoSS have already been successfully applied to study several 
logical models (Calzone et al., 2010; Remy et al., 2015; Cohen et al., 2015). 

As mentioned previously, GINsim includes a functionality enabling the export of logical 
models into MaBoSS format. 

 

1.3 Model perturbations        

Model variants representing biologically plausible perturbations 

Perturbations can be introduced in the model in order to predict the cell behaviour in altered 
conditions. In particular, mutations are modelled with perturbations that affect the level of a 
node. The amplification of a gene is translated by a forced level of 1 for the corresponding 
node, while a loss-of-function is translated by a forced level of 0. Testing attractor's stabilities 
against mutations with simulations show the effect they have on the cell behaviour, and allow 
to determine driver mutations that promote phenotypic transitions. 

Multiple perturbations can also be considered, and can represent cell lines or patient-specific 
mutation profiles. 

Different perturbed versions of the model can also show how cell phenotypes can evolve 
towards full malignancy through distinct sequences of accumulated mutations, and can 
predict whether the order in such sequences is important. 
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Finally, perturbations can also be used to model drug treatments. Thus, logic models can be 
used to simulate the effect of therapeutic interventions, and hence predict the expected 
efficacy of candidate drugs on different genomic backgrounds. 

 

1.4 Model reduction     

In this project, we begin by building a model based on a large network, encompassing all 
relevant nodes and pathways for prostate cancer. Stochastic simulations allow to analyse 
easily the dynamics in spite of the size and complexity of the system. 

To perform a detailed analysis of the asynchronous dynamics while avoiding the 
combinatorial explosion of the number of states to consider, it is possible to reduce the 
number of components in a logical model while preserving the relevant dynamical properties 
of the master model. The dynamics of the resulting reduced model are encoded in a 
transition graph of smaller size, which is more amenable to a detailed dynamical analysis. 

GINsim contains a function to automatically reduce a model. Only the key players can be 
selected and GINsim provides an equivalent dynamical model that is able to reproduce the 
same solutions as the full model. 
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Chapter 2 Model building 

Building the model is done in three steps :  

1- identifying signalling pathways or particular genes and proteins that are especially relevant 
to describe the prostate cancer tumorigenesis and tumor growth. Most of them are 
components that are known to be frequently altered in cancers. 

2 - building a regulatory network that includes simplified representations of pathways 
identified as relevant for prostate cancer, as well as all individually identified genes. Each 
pathway is characterized by the key players that regulate it. This network takes the form of a 
directed graph for which positive and negative influences between components are 
represented.  

3 - From this network, a logical model is derived describing the network dynamics in specific 
contexts (dependent on initial conditions or perturbations). To this end, logical rules are 
associated to each node of the network to indicate how it is activated or inhibited by different 
combinations of its regulators. 

 

2.1 Existing logical models 

In the last decade, logical modeling has successfully been used to describe the dynamics of 
human cellular signal transduction and gene regulation (Helikar et al., 2008; Calzone et al., 
2010; Grieco et al., 2013; Flobak et al., 2015; Cho et al., 2016; Traynard et al., 2016), and 
their deregulation in cancer (Fumia et al., 2013; Hu et al., 2015).  

Some of these already published models are available in SBML, the standard format for 
systems biology, in model repositories such as BioModels (Juty et al., 2015). 

We combine published logical models of human signalling networks, and in particular the 
Boolean network model published in (Fumia et al., 2013), which is based on integrated 
experimental evidence of signal transduction. This model integrates major signaling 
pathways that have a role in regulating cell death and proliferation in many tumors. They 
include those involving receptor tyrosine kinase (RTKs), phosphatidylinosital 3-kinase 
(PI3K)/AKT, WNT/b-Catenin, transforming growth factor-b (TGF-b)/Smads, cyclins, 
retinoblastoma protein (Rb), hypoxia-inducible transcription factor (HIF-1), p53 and ataxia-
telangiectasia mutated (ATM)/ataxia-telangiectasia and Rad3-related (ATR) protein kinases. 
The pathways reveal substantial cross-talks. 

This initial generic network was then extended to include prostate-cancer-specific genes and 
proteins using several approaches presented below. 

 

2.2 Inputs and outputs  

The model aims at predicting phenotypic behaviours for healthy or cancer cells in different 
conditions. This amounts to assessing the reachability of phenotypes starting from 
‘‘physiological’’ initial conditions. These conditions are encoded by input nodes, with no 
regulation but whose values are fixed for each simulation, and represent the cell’s 
microenvironmental characteristics. 

Distinct cell phenotypes can be inferred from specific protein activities in the network 
attractors (for example, the activation of caspases correspond to apoptotic conditions). For 
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simplicity, we choose to clearly define phenotype variables as output nodes. This allows to 
integrate multiple phenotypic signals and obtain a 0/1 value for each phenotype. We define 
three main phenotypes representing the growing status of the cell: Proliferation, Apoptosis, 
and Quiescence. Apoptosis is activated by Caspase 8 or Caspase 9, while Proliferation is 
activated by either cyclin in the cell cycle. Before further refinements of the model, we define 
Quiescence as the absence of Proliferation and Apoptosis. This definition of phenotypes will 
improve in the future versions of the model. We already note that Proliferation and Apoptosis, 
although not directly linked, appear always mutually exclusive in simulations, which hints at a 
correct regulation of these nodes. 

The proliferation output is sometimes described in already published models as specific 
stationary protein activation patterns, namely the following sequence of activation of cyclins: 
Cyclin D, then Cyclin E, then Cyclin A, then Cyclin B. This sequence can easily be detected 
in complex attractors in synchronous dynamics. However, since we prefer asynchronous 
dynamics for which it is more difficult to analyze complex attractors, we define Proliferation 
as activated by either of the four cyclins. Transient dynamics in MaBoSS simulations allow to 
check the correct oscillation of cyclins (see Section 3.1). 

Moreover, we define several phenotypic outputs that are not mutually exclusive but merely 
detect the activation of some markers of cancer hallmarks: angiogenesis, epithelial-
mesenchymal transition (EMT), bone metastasis, DNA repair, migration, and glycolysis. 

 

2.3 Identification of new components based on literature search 

Several studies have focused on identifying main subtypes among the heterogeneous 
molecular abnormalities in prostate cancer.  

In particular, a recent TCGA study (Abeshouse et al., 2015) reported a comprehensive 
molecular analysis of 333 primary prostate carcinomas. Seven subtypes, containing 74% of 
these tumors, were defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations 
(SPOP, FOXA1, and IDH1). Epigenetic profiles allowed to identify a methylator phenotype in 
the IDH1 mutant subset. SPOP and FOXA1 mutant tumors show the highest levels of AR-
induced transcripts. Lesion in the PI3K or MAPK signaling pathways are observed in 25% of 
the prostate cancers, and DNA repair genes inactivation in 19%. 

The following list of frequently mutated genes extracted from this study indicate components 
that could be included in the model, provided that enough information is available on their 
mechanistic roles:  

- gene fusion: ERG, ETV1, ETV4, FLI1 
- deletions: SPOP, FOXA1, IDH1, TP53, PTEN, PIK3CA, BRAF, CTNNB1, HRAS, MED12, 

ATM, CDKN1B, RB1, NKX3-1, AKT1, ZMYM3, KMT2C, KMT2D, ZNF770, CHD1, 
BRCA2, CDK12, SPINK1 

- amplifications: CCND1, MYC, FGFR1, WHSC1L1. 
Comparing with a recently published cohort of 150 castration-resistant metastatic prostate 
cancer samples (Robinson et al., 2015), the authors find a similar subtype distribution as in 
Abeshouse et al., with increased alteration rates in the metastatic samples, and more 
frequent amplification or mutation of AR, as well as DNA repair and PI3K pathway 
alterations. 

 

Other studies such as (Altieri et al, 2009) focus on the role of specific pathways which play a 
critical role in prostate cancer maintenance, such as chaperone-mediated mitochondrial 
homeostasis (in particular with HSP90 found very abundant in prostate cancer), integrin-
dependent cell signaling, and RUNX2-regulated gene expression in the metastatic bone 
microenvironment. 
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Notably, a set of regulatory maps of signalling pathway maps and altered circuitries of 
various cell biological events associated with the pathogenesis of human prostate cancer 
have been published recently (Datta et al., 2016). The authors manually constructed 
networks based on the literature. These networks constitute an important resource for 
retrieving information on prostate cancer specific components. Although not exhaustive, 
these maps are synthetic pictures of the existing knowledge on molecular events involved in 
prostate cancer hallmarks. 

The covered hallmarks include: 

(1) classical cancer hallmarks: insensitivity to anti-growth signal, self-sufficiency in growth 
signal, tumor promoting inflammation, genome instability, mutation and perturbation, 
angiogenesis, metastasis, cell death resistance, metabolic reprogramming, avoidance of 
immune destruction, enabling replicative immortality, tumour microenvironment; and (2) 
prostate cancer specific hallmarks: androgen receptor signalling, androgen independence, 
castration resistance. 

  

This study points toward some candidate nodes to extend our network in order to take into 
account, at least in a simplified way, most pathways present in the maps. In particular, it 
shows that the initial network obtained through combinations of published models ignore any 
pathways related to inflammation, metabolism, immune evasion, or the tumor 
microenvironment. 

However, the resource contains few mechanistic details for the interactions between its 
components, which are a mix of genes, proteins, molecules, processes and phenotypes.  

 

Finally, among all these genes associated with prostate cancer, a subset has been chosen 
inside PrECISE for full exon sequencing: AR, PTEN, SPOP, TP53, EZH2, FOXA1, BRCA1, 
BRCA2, PIK3CA, AKT1, NCOA2, NCOR1, NCOR2, EP300, MYC, RB1, CHD1, CDKN1B, 
MED12, ZNF595, HOXB13. This list should be included in the model in priority, in order to be 
able to use the corresponding data. 

 

2.4 Identification of new components based on data analysis 

ROMA (Martignetti et al., 2016) is a software package written in Java for the quantification 
and representation of biological module activity using expression data. It uses the first 
principal component of a PCA analysis to summarize the coexpression of a group of genes in 
the gene set. 

We apply ROMA analysis on the proteomic data produced on samples from 39 patients. We 
define gene sets as they are described in the atlas of cancer signaling networks, ACSN 
(www.acsn.curie.fr). ACSN is centered on signaling pathways such as DNA repair, cell 
death, EMT, cell adhesion, cell cycle, etc.    

Using ROMA, we are able to identify some pathways significantly overdispersed over the 
samples, that should have relevant roles in prostate cancer and need therefore to be 
correctly described in the model. 

The results (see Figure 1) show 21 modules that reveal a high variance of protein expression 
across all samples. The apoptotic pathway seems to show a progressive activation from 
normal to high grade tumors, so does cell adhesion pathway, whereas the MAPK, or the 
PI3K pathways show opposite behavior. 
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Therefore, ROMA provides some hints on where to extend the network to fully grab the 
alterations that are found in prostate cancer patients. The Hedgehog pathway was not 
described in the already published logical models that we used as a starting point of this 
model. Moreover, the DNA repair was overly simplified. 

Further analysis of the proteins contributing to each module variance reveals that HSP90 
(with its different forms HSP90AA1, HSP90AB1, HSP90B1) contribute highly to the variance 
of 6 of these 21 modules. Other proteins that contribute to several modules and could 
therefore have a particular relevance include YWHAB/YWHAG/YWHAQ, H2AFX, and 
laminins (LAMA2, LAMA4, LAMA5, LAMB1, LAMB2, LAMC1). Their role in prostate cancer 
regulation should be further explored before including them in the network. 

 

Figure 1: Mean activities by samples subgroups for gene modules defined from pathways described in 
ACSN and significantly overdispersed over all samples. Blue indicates low pathway activity, red 

indicates high pathway activity. 

 

 

2.5 Model extension with Omnipath via pypath 

OmniPath is developed by one of the partners of PrECISE. It  is a comprehensive collection 
of high confidence, literature curated, human signaling pathways. It is accompanied and 
developed together with Pypath, a Python module for cellular signaling pathways analysis. 

Pypath is a python module used to query the content of Omnipath in order to retrieve 
components and interactions in the human protein-protein signaling network associated with 
annotations, especially sources, literature references, direction, effect signs 
(stimulation/inhibition) and enzyme-substrate interactions. 

 

The development of pypath allows to build sophisticated and personalised queries. For 
instance, existing interaction paths between a protein of interest and a list of user-defined 
proteins can be found, with a given size for the paths. We use this in the extension process 
of our network to automatically find new interactions between a new gene and the genes 
already included in the network. We filter the interactions found to select the ones for which 
the direction and sign are known. 
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For example, when extending the network with the chaperone protein HSP90AA1, we 
generate the graph displayed in Figure 2, which shows all signed directed interactions linking  
HSP90AA1 to the network. The associated references given as annotations are useful to 
check the mechanism behind each interaction and manually infer a logical rule. 

 

Figure 2: Signed directed interactions between HSP90AA1 and nodes already taken into account in 
the model. 

 

2.6 Model extension with the literature      

PPI (protein-protein interactions) and signaling databases are useful to find quickly 
established interactions between genes and proteins. However, they are not exhaustive and 
in particular they often lack recent findings. It is therefore necessary to rely on manual 
literature search to find information on specific prostate cancer components.  

The roles of the fusion gene TMPRSS2:ERG and the tumor suppressor NKX3-1 are 
examples where the information from databases retrieved from Omnipath or PPI databases 
is lacking, and for which we found additional information from the literature. 

 

Figure 3: shortest paths found between ERG and TMPRSS2 or NKX3-1 by Pypath: no direct 
interaction is found. 
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Fusion genes are frequently found in human prostate cancer, and have been identified as a 
specific subtype marker (Abeshouse, 2015). The most frequent is TMPRSS2:ERG. It 
involves the transcription factor ERG, which leads to cell-cycle progression. ERG fuses with 
the AR-regulated TMPRSS2 gene promoter to form an oncogenic fusion gene that is 
especially common in hormone-refractory prostate cancer, conferring androgen 
responsiveness to ERG. This fusion is not found with Pypath, nor is any target of ERG (see 
Figure 3). However, literature search reveals that ERG directly regulates EZH2, oncogene c-
Myc and tumor suppressor NKX3-1 and many other targets in prostate cancer (Kunderfranco 
et al., 2010). 

We model the gene fusion with an activation of ERG by the logical product AR & TMPRSS2. 
In the wild-type case, TMPRSS2 is fixed to the level 0. The occurrence of the gene fusion is 
represented with the model perturbation where TMPRSS2 is fixed to 1. 

Moreover, it turns out that ERG expression has a major impact on cell invasion and 
epithelial–mesenchymal transition (EMT) through the upregulation of the FZD4 gene, a 
member of the frizzled family of receptors. In our model, we choose for simplicity to consider 
ERG as a marker of EMT, with a direct activation of the output node EMT by ERG. (Adamo 
et al., 2016) 

NKX3-1 has been identified as a tumor suppressor for prostate cancer. Since it is frequently 
mutated, it should be included in the model. Some of its regulations can be found with 
Pypath (see Figure 4), in particular its activation by AR and PKC. However, its role is not 
identified. The literature search highlighted its role in accelerating the DNA repair response 
and in particular in avoiding the gene fusion TMPRSS2:ERG. NKX3-1 binds to AR at the 
ERG gene breakpoint and inhibits both the juxtaposition of the TMPRSS2 and ERG gene loci 
and also their recombination, by influencing the recruitment of proteins that promote 
homology-directed DNA repair. Thus, loss of NKX3-1 favors recruitment to the ERG gene 
breakpoint of proteins that promote error-prone non-homologous end-joining (Bowen et al., 
2015). 

We therefore add the absence of the node NKX3-1 as a new requirement for the activation of 
ERG by AR and TMPRSS2 in the model. The effect of the gene fusion can be seen in 
combination with the perturbation that maintains NKX3-1 to the null level. 

In contrast with these examples where some knowledge can be retrieved from the literature, 
some new nodes can not be included in the model in a satisfactory manner, because of 
missing information about their regulation or role. High-throughput studies have allowed to 
identify genes with mutations or expression associated with prostate cancer progression or 
prognosis. But for many of them, the precise mechanisms behind this association remains to 
be elucidated. 

For example, IDH1 (isocitrate dehydrogenase 1) exhibits a recurrent mutation in 1% of 
primary prostate cancers that defines a specific subtype (Abeshouse et al., 2015). This 
mutant status is associated with a DNA hypermethylation phenotype. Despite a lack of 
detailed mechanisms linking this gene to the regulation network, we can still reflect this 
association in the model by including IDH1 as a non-regulated gene, whose absence (level 
0) induces the activation of a new output node Hypermethylation. The regulation of both new 
nodes IDH1 and Hypermethylation should be refined when new knowledge is found. 

In some cases, we cannot provide any link for a new node, either to an existing node or to a 
phenotypic output, even qualitatively. For example, ZNF595 has been linked to prostate 
cancer progression and is therefore going to be sequenced in PrECISE. However, this gene 
encodes a protein belonging to the Cys2His2 zinc finger protein family, whose members 
function as transcription factors that can regulate a broad variety of developmental and 
cellular processes. This knowledge is not detailed enough to add this node in the model yet. 
However, future mutation data from prostate cancer samples, associated with clinical data, 
will allow to test several hypothesis. 
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2.7 Extended model  

The extended model contains 130 nodes and 357 interactions. The network is displayed in 
Figure 4. The model is provided as .bnet file where each row contains a target node and its 
associated logical rule. 

 

 

Figure 4: Network of pathways altered in prostate cancer, with input nodes in yellow, output nodes in 
purple, prostate-cancer-specific nodes in blue.  
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Chapter 3 Model analysis 

3.1 Simulations of healthy cells in different conditions 

The wild-type model comprises all pathways involved in prostate cancer, in unaltered state. It 
can be understood as a model of healthy prostate cells. These cells should exhibit 
quiescence in absence of inputs. The activation of proliferation should be dependent on the 
presence of nutrients and growth factors. Cell death factors should trigger full apoptosis, 
while hypoxia and carcinogen should trigger partial apoptosis. Androgen should help the 
activation of proliferation. We check that these observations are indeed verified by stochastic 
simulations in each condition. 

Figure 5 shows the state distribution at the end of the simulation in absence of any input, as 
well as the mean transient probabilities, for the three main outputs (Proliferation, 
Quiescence, Apoptosis). The results in different conditions are summarized in Table 1. Note 
that as said in Section 2.2, some outputs are not mutually exclusive, therefore the sum of all 
output probabilities can be higher than 1. 

As mentioned in Chapter 1, in proliferating conditions, transient mean probabilities of the 
cyclins can be used to check that the order of activations of these nodes in the paths leading 
to the cyclic attractor is consistent with a correct progression of the cell cycle (see Figure 6). 

 

Figure 5: Stochastic simulation in the condition with no input and random initial states (probabilities of 
0.5). Measured variables are the levels of the nodes Proliferation, Quiescence, Apoptosis. Left: 

transient probabilities. Right: state distribution at the end of the simulation. 
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Figure 6: Mean probabilities of the nodes characterizing the cyclins and proliferation, with nutrients 
and growth factors as inputs. We choose initial states for the nodes involved in the cell cycle that 

correspond to quiescence (cyclins OFF, cell cycle inhibitors Rb and p27 ON), in order to visualize the 
order of activation of the cyclins: first Cyclin D, then Cyclin E, Cyclin A and finally Cyclin B. The mean 
probabilities reach asymptotic levels because of the desynchronization of stochastic trajectories in the 

population. The non-null transition entropy TH indicates a cyclic attractor. 
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No input 0.01 0.98 0 0 0 0 0 0 

GFs 0.43 0.57 0 0 0 0 0 0 

Nutrients 0.05 0.93 0 0 0 0 0 0 

Androgen 0.21 0.77 0 0 0 0 0 0 

GFs,Androgen 0.99 0.02 0 0 0 0 0 0 

Nutrients,Androgen 0.16 0.82 0 0 0 0 0 0 

Nutrients,GFs 0.93 0.08 0 0 0 0.08 0.05 0 

Nutrients,GFs, Androgen 0.81 0.19 0 0 0 0.24 0.14 0 

Nutrients,GFs, Carcinogen 0.63 0.20 0.20 0 0 0.03 0.04 0 

Nutrients,GFs, 

Carcinogen,Androgen 
0.39 0.37 0.29 0 0 0.10 0.07 0 

Nutrients,GFs, Hypoxia 0 0.50 0.49 0 0 0 0 0 

Nutrients,GFs, 

Hypoxia,Androgen 
0 0.46 0.54 0 0 0 0 0 

Nutrients,GFs, TNFalpha 0 0.37 0.63 0 0 0 0 0 
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Nutrients,GFs, 

TNFalpha,Androgen 
0 0.99 0 0 0 0 0 0 

Table 1: Output probabilities for the wild-type model in different input conditions. Partial proliferation is 
induced by GFs and Androgen, while full Proliferation requires Nutrients and GFs. Carcinogen, 

Hypoxia and TNFalpha induce partial Apoptosis. Androgen induces low probabilities of Angiogenesis 
and Glycolysis in some conditions. Values below 0.01 are written as 0. 

 

3.2 Mutation simulations 

A mutant in the logical framework is simulated by setting the node corresponding to the gene 
mutated to 0 in the case of loss of function and to 1 in the case of gain of function. 

The effect of a mutation is assessed by comparing the probabilities for reaching a phenotype 
in the wild type to the probabilities in the mutant conditions. 

Therefore, mutations should either decrease or increase the phenotypes: Apoptosis, 
Quiescence, Proliferation, EMT, angiogenesis, inflammation, Invasion, Migration, etc. 

 

Single mutations 

The single mutations of some of the main nodes of the network show some changes in the 
probabilities of reaching the phenotypes when compared to wild type conditions.  

The examples on Figure 7 show that a loss-of-function mutation of FOXA1 in proliferative 
conditions (nutrients and growth factors) results in the activation of EMT (epithelial-
mesenchymal transition).  A loss-of-function mutation of TP53 in the same condition with the 
addition of carcinogen results in the loss of the apoptosis induced by DNA damage. 

 

Figure 7: Mean probabilities in simulations of mutated models. Left: loss-of-function mutation of 
FOXA1. Right:  loss-of-function mutation of TP53. 

 

We provide in Table 2 a selection of simulations for nodes contained in the model that have 
been reported to be frequently mutated in prostate cancer, with their effects on the model 
outputs in different conditions. 
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d:E-cadherin 0.04 0.21 0.76 0.05 0 0 0 0 

u:GLI 0.11 0.17 0.71 0 0 0 0 0 

u:ETV1 0.05 0.21 0.75 0 0 0 0.58 0 

d:FOXA1 0.05 0.22 0.74 0.05 0 0 0 0 

u:AKT 0.17 0.26 0.67 0 0 0 0 0.01 

u:HSP90 0.18 0.62 0.19 0 0 0 0 0.01 

u:ETS1 0.07 0.49 0.44 0 0 0 0 0 

d:p53 0.12 0.67 0.21 0 0 0.01 0 0.01 

Table 2: Output probabilities for a subset of single perturbations of the model, with random input 
conditions. “d:” corresponds to inhibition and “u:” to overactivation of the node. Values below 0.01 are 

written as 0. 

 

Multiple mutations 

Cancer progression is characterized by the accumulation of genetic alterations that affect 
multiple pathways in the signaling network. The logical model allows to easily simulate all 
possible combinations of mutations and study the potential redundancy or synergy of 
alteration effects and the importance of order. An example of double mutation is shown in 
Figure 8, where the combination of the gene fusion TMPRSS2:ERG and the loss-of-function 
of NKX3-1 activates Bone Metastasis signals in proliferative conditions with androgen 
induction. 

 

 

Figure 8: Mean probabilities in simulations of the model with a multiple simulation: the gene fusion 
TMPRSS2:ERG and a loss-of-function of NKX3-1. 
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The model allows to study easily all possible associations of mutations to assess synergies 
or redundancies. It can also reproduce sets of mutations observed in tumors. Different 
sequences of possible acquired mutations can be simulated and compared to what is already 
known about patients harboring these mutations.  

We can see on Figure 9 an example of a sequence of mutations, showing the relative 
importance of each new alteration in a genetic profile regarding the probability of each 
phenotype. 

 

Figure 9: Variation of output probabilities in all conditions along a mutation sequence. “d:” corresponds 
to inhibition and “u:” to overactivation of the node. The mutation u:TMPRSS2 corresponds to the gene 

fusion TMPRSS2:ER 
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Chapter 4 Summary and Conclusion 

In conclusion, we have built a logical model of prostate cancer, involving the main signaling 
pathways altered in prostate cancer cells. Stochastic simulations allow us to obtain 
quantitative output probabilities summarizing complex asynchronous dynamics. This model 
can predict a set of phenotypic behaviors for a prostate cell given its microenvironmental 
condition. The effect of different perturbations of the model on these phenotypes show how 
genomic alterations initiate and contribute to the different hallmarks composing cancer 
progression. 

We validate the model by verifying the consistency between predicted phenotypes and 
expected behaviors of different cancer cells. 

This generic model constitutes a starting point for the study of prostate cancer inside 
PrECISE, and will be updated regularly throughout the project. In particular, further extension 
of the regulatory network will include interactions and pathways identified in other work 
packages with methods of network inference and data analysis, such as the prostate cancer 
interactome described in D4.1. 

Perspectives for the model have been planned in the project, with the instantiation of data-
based patient-specific versions of the model. In addition to patient mutation profiles, 
normalized protein or mRNA expression from patients will be used as initial probabilities for 
the nodes present in the model, in order to obtain patient-specific outcome probabilities. 
Pathway analysis methods such as ROMA can be used to set values for unobserved nodes. 

Finally, the Boolean network model will be employed to evaluate the outcome of molecularly 
targeted cancer therapies. This will allow to orient the selection of ligand and inhibitor targets 
to generate phosphoprotein data that will be the most instructive. This data will ultimately 
allow to validate further the model, or correct it to account better for this new data. 
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