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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the 

information is fit for any particular purpose. The users thereof use the information at their sole risk and 
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Executive Summary 

One of the objectives of WP5 is to provide a list of candidate drugs and combinations of 
drugs for cell lines and for specific patients. To get to this point, we leverage the work 
described in deliverables D5.1, D5.2 and D5.3 and run a series of computational analysis 
that aim to provide a list of targets of interest in prostate cancer. This deliverable describes 
how the prostate cancer Boolean model is mixed with prostate cancer related experimental 
data to derive cell line and patient specific target candidates. As an alternative to Boolean 
modeling and for comparison purposes, a data based approach to finding cell line specific 
targets is also used. 

The final list of proposed targets constitutes a starting point for the design of validation 
experiments in D6.5.  
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Chapter 1 Introduction 

The current array of options for prostate cancer treatment is limited. When careful 
observation, surgical intervention and chemical castration fail, there are only a handful of 
treatment options left. Currently approved drugs by the FDA for prostate cancer can be 
organized in four types of inhibitors: androgen receptor (AR), testosterone production, tubulin 
and gonadotrophin-releasing hormone (GnRH) inhibitors (https://www.cancer.gov/about-
cancer/treatment/drugs/prostate). One of these approved drugs is Enzalutamide, which is 
given to those patients that have become castration resistant (i.e. they do not respond to 
treatments designed to lower testosterone levels anymore). However, the drugs used at later 
stages usually end up failing when the cancer develops a resistance mechanism against 
them. For this reason, finding new targets and drugs to act upon them constitutes an urgent 
need.  

Given the heterogeneity of the disease observed in each patient, it is likely that personalized 
treatments will be needed to effectively treat patients. However, as trying different treatments 
on a single patient is not a feasible nor an ethical option, an in-silico approach needs to be 
devised to meet this goal. To evaluate the efficacy of different drugs, we need to start by 
working with cell lines instead of patients. Using cell lines that, for example, represent an 
Enzalutamide sensitive and a resistant stage of prostate cancer, we can learn important 
things about its biology and obtain clues to better treatments. The use of cell lines allows the 
design of experiments in which time-course data can be obtained under perturbations that 
may include combination of treatments. This type of setting provides input data for dynamic 
models and the exploration of steady state responses. 

This deliverable is focused on the use of Boolean model techniques mixed with prostate 
cancer related experimental data to get closer to meeting these goals. Using these models, 
we can propose cell line and patient specific target candidates, which can later enter a stage 
of experimental validation provided they meet additional criteria established during drug 
development processes. In this regard, the list of proposed targets in this deliverable 
constitutes a starting point for the design of validation experiments in D6.5.  
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Chapter 2 Cell-line-specific drug targets 

Cell lines are particularly important for the modelling of drug response in patients, as the data 
characterizing their molecular profiles in basal state or upon perturbation with drugs and their 
combination is easier to acquire than analogous data for patients. Also, multiple drugs in 
different doses can be tested on the cell lines, while such an option is not conceivable with 
patient research. In silico methods also allow to investigate the mechanisms of drug 
sensitivity/resistance, improving the quality of the predicted drug. 

Here, the goal was to identify drug targets specific for each cell-line of interest enabled by the 
developments attained in tailoring our model to a given set of data. Thus, the present 
deliverable builds on top of D5.3 to be able to provide candidate drugs and combinations of 
drugs for cell lines (Task 5.4). 

Each cell line is conceptually identical to a single patient. Thus, predicting cell line response 
from molecular data, mimics personalization of patient drug treatment, informed by molecular 
profiling of patient tissues. 

There are multiple approaches to predict drugs that could benefit prostate cancer patients. 
One is to identify the key protein that can be targeted, and these can be identified with logical 
models; another is to build the regression model, predicting the sensitivity to the drug from 
gene expression data. In the following section, we will describe these approaches in detail. 

 

2.1 Use of cell-line-specific Boolean models 

2.1.1 Generic logical model of prostate cancer 

The generic logical model of prostate cancer delivered in D5.1 was integrated with data to 
have tailored models, delivered in D5.3. The results from this set of models capture patient- 
and cell-line-specific behaviours. 

2.1.2 Public transcriptomic cell line data used to tailor the model 

We used data from Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang et al. 
2013) that is the largest public resource for information on drug sensitivity in cancer cells and 
molecular markers of drug response. GDSC currently contains drug sensitivity data for 
almost 75 000 experiments, describing response to 138 anticancer drugs across almost 700 
cancer cell lines. 

We obtained the data for all the 1001 GDSC cell lines and selected the 4 prostate-specific 
cell lines for which we had copy number alterations (CNA), mutations and RNA data: BPH-1, 
DU-145, LNCaP-Clone-FGC and PC-3. All of them are derived from carcinomas, except for 
BPH-1 that has its origin in a benign prostate hyperplasia. 

2.1.3 Obtaining cell-line-specific Boolean models 

Following the methodology presented in D5.3, the recipe (the methodology used to combine 
data in the model) selected for the prostate cell lines was using transcriptomic data as initial 
conditions and transition rates. Using mutation or CNA data was not deemed useful in this 
case as their recipes did not further discriminate among cell lines’ behaviours. 

The personalization of the prostate model into cell-line-specific models generates different 
phenotype probabilities among these and captures some of their differences. For instance, 
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PC-3 has a high glycolysis rate, BPH-1 has a very low Invasion and a high Proliferation and 
DU-145 has a higher Proliferation than the rest of carcinomas (Figure 1). 

 

Figure 1: Phenotype simulation results across GDSC prostate-cell-line-specific Boolean models’ 
simulation with random initial conditions. WT stands for wild type model, the original prostate model 

with no personalization. 

As deliverable D5.2 provided additional data for the LNCaP-clone-FGC cell line, we chose 
this cell line model to study its genetic interactions and its uses for drug discovery. This 
LNCaP-specific model has 24 stable states that can be grouped in 6 main phenotypes: 
Quiescence, Proliferation, Apoptosis, Invasion, Glycolysis and Hypermethylation. Thanks to 
MaBoSS software (Stoll et al. 2017) we were able to assign probabilities to each one of 
these phenotypes. 

2.2 Model-based identification of drug targets specific to cell-lines 

Using MaBoSS, the LNCaP model, which corresponds to LNCaP-clone-FGC cell line data, 
was simulated with increasing node inhibition values to mimic the effect of drugs on the 
model genes. Six simulations were done per each inhibited node, with 100% of node activity 
(no inhibition), 80%, 60%, 40%, 20% and 0% (proper knock-out), under four different initial 
conditions, a nutrient-rich media with androgen, with EGF, with both and with none. For 
instance, beta_catenin node was sequentially inhibited under these four condition and their 
Invasion output scores were compared to the WT scores (Figure 2). Inhibition of 
beta_catenin node is dependent on Androgen presence in the growth media and the 
inhibition is much more efficient when Androgen is not present (00 and EGF conditions, 
Figure 3). 

Likewise, this analysis was extended to knock-out perturbations and to the 10 outputs of the 
model and this resulted in a list of 26 genes that hampered Proliferation and/or promoted 
Apoptosis under one or several of the aforementioned growth conditions: 

ANAPC1, BAX, BRCA1, CASP9, CDH1, ETS1, FOXO1, HSP90AA1, MAPK1, MAPK3, MAX, 
NCOR1, NFKB1, NFKB2, NOX1, NOX2, NOX3, NOX4, REL, RELA, RELB, RUNX2, SPOP, 

TERT, TNFRSF1A, TP53 

These 26 genes corresponded to 18 nodes in the model (BAX, BRCA1, Caspase9, Cdh1, 
ERK, ETS1, E_cadherin, FOXO, HSPs, MAX, NCOR1, NF_kB, ROS, SPOP, TERT, 
TNFalpha, beta_catenin, p53).  

This list of targets was compared to analyses performed using other datasets from the 
present project, such as PPP1, PC39 and the panel of genes used for targeted sequencing 
in WP1. Depicted in bold are genes found in most of these studies. Most of the genes of this 
gene list were identified as being significantly characteristic of PPP1 patients (21 out of 26: 
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ANAPC1, BAX, BRCA1, CASP9, CDH1, ETS1, FOXO1, HSP90AA1, MAPK1, MAPK3, MAX, 
NFKB1, NOX1, NOX3, NOX4, RELA, RUNX2, SPOP, TERT, TNFRSF1A, TP53). Also, 2 
genes of this gene list were identified as being significantly characteristic of PC39 patients 
(CDH1, HSP90AA1). Lastly, 3 genes of this gene list were also found in the panel of genes 
used for targeted sequencing in WP1 (CDH1, SPOP, TP53). 

Additionally, these analyses can be combined to study the interaction of inhibiting two nodes 
simultaneously. For instance, beta_catenin and AKT nodes combined inhibition can be 
studied in Figure 4 and their Invasion score is mainly affected by beta_catenin inhibition 
under non-androgenic conditions (00 or EGF) and responds to both beta_catenin and AKT 
nodes inhibition under androgenic conditions (AR or AR_EGF). Lastly, drug synergies can be 
studied using the single and combined simulations (Figure 5). In present work, Bliss 
Independence synergies were calculated for the combined inhibition of beta_catenin and 
AKT nodes (Figure 6). This score compares the combined effect of two drugs with the effect 
of each one of them, with a synergy when the value of this score is lower than 1. As it can be 
seen in Figure 6, there are synergies among these drugs in phenotypes such as Invasion (for 
beta_catenin) and Glycolysis and Proliferation for AKT. Again, these synergies depend on 
the presence of androgen in the growth media. 

 

Figure 2: LNCaP-specific model phenotype probability variations under four different growth 
conditions. AR stands for androgen presence, EGF for EGF presence. 
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Figure 3: Invasion phenotype probability variations upon beta_catenin node inhibition under four 
different growth conditions. 
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Figure 4: Phenotype score variations upon nodes inhibition under four different growth conditions for 
beta_catenin and AKT inhibitions. 

 

Figure 5: Phenotype score variations upon combined nodes inhibition under four different growth 
conditions. 
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Figure 6: Bliss Independence synergies scores variations upon combined nodes inhibition under four 
different growth conditions. Combination Index < 1 means synergy. 

 

2.2.1 List of targets proposed 

As a result of these analyses, we selected the 5 mutated nodes that hampered Proliferation 
and/or promoted Apoptosis the most (HSPs as HSP90AA1 gene, SPOP, MAX, TERT and 
ROS as NOX1, NOX2, NOX3 and NOX4 genes) and we completed it with several genes 
considered relevant in cancer progression, such as AKT, AR, EGFR, PI3K and MEK. 
Inhibition of different nodes affected differently the output probabilities and some of them 
were androgen dependent, such as beta_catenin (Figure 4, where values of scores are 
depicted with a colour gradient). Thus, the final gene list proposed for validation experiments 
given by this part of the analysis for the validation experiments of T6.3 and to constitute the 
starting point of D6.5 was: 

HSP90AA1, SPOP, MAX, TERT, NOX1, NOX2, NOX3, NOX4, AKT, AR, EGFR, PI3K, MEK 

 

2.3 Phosphoproteomic profile prostate cancer cell lines 

With the aim of better characterizing the signalling response of prostate cancer cells, 
manifested mostly as the change of phosphorylation state of signalling proteins, changing 
their post-translational modification (PTM) status, in deliverable D5.2 we described phospho-
proteomic SWATH-MS measurements on two prostate cancer cell lines, LNCaP and LNCaP-
abl upon perturbation with different ligands and inhibitors (Figure 7). The cell lines chosen 
are closely related, but differ in a major component – enzalutamide sensitivity, major 
component of prostate cancer aggressiveness. This setup allows to address specifically the 
changes that are related to the enzalutamide resistant growth of tumors and is associated 
with the latest and most aggressive state of the disease. 

After removing outliers, the PCA plot after batch correction (using a linear model that 
accounts for the effect of covariates) showed a clear difference between the two cell lines 
used, but the difference between perturbations was not immediately obvious (Figure 8). 
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The main goal of this data was to use it in combination with the prostate cancer Boolean 
model delivered in D5.1 and CellNOpt software (Terfve et al. 2012) in order to improve the 
Boolean model. We started by using CellNOpt and then moved on to using PHONEMeS 
(Terfve et al. 2015), which also uses Boolean modelling but it is better prepared to handle 
high coverage data such as the one provided by SWATH-MS technology.  

PHONEMeS finds a network that connects the perturbations (inhibitors or ligands) to the 
phosphosites that the data shows as changing under the performed experiments. The link 
between them is explained by an underlying Boolean model. We used a background network 
of post-translational modifications (PTMs) retrieved from Omnipath (introduced in D3.1) 
(Türei et al. 2016) in combination with the experimental data (D5.2). The network obtained 
for the LNCaP cell line data (Figure 9) is smaller than the one recovered for the LNCaP-abl 
cell line data (Figure 10). It can be interpreted that the LNCaP-abl cell line shows a greater 
activity in response to the applied perturbations. Differences between both networks are 
highlighted in Figure 11. 

 

 

Figure 7: Schematic representation of collected phospho-proteomic samples. The cell lines used are 
LNCaP and LNCaP-abl, exposed to different combinations of ligands (EGF or DHT) and inhibitors (no 

inhibitor, PI3K inhibitor or MEK inhibitor) and measured at different time points. 
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Figure 8: PCA plot of the corrected phospho-proteomic data. Clear differences between cell lines can 
be seen, but the effect of the different perturbations is not immediately evident. The cell lines are 

distinguished using different shading. Ligands are distinguished using different shapes. Inhibitors are 
distinguished using different colors. Lines connect replicate samples, with the arrow pointing to the last 

replicate. 

 

Figure 9: PHONEMeS network for the LNCaP cell line. 
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Figure 10: PHONEMeS network for the LNCaP-abl cell line. 

 

Figure 11: All the gene symbols represented in nodes found in the LNCaP network recovered by 
PHONEMeS are included in this figure. The LNCaP-abl network recovered by PHONEMeS covers a 

total of 97 gene symbols, while the LNCaP network covers only 24 gene symbols. 

2.3.1 List of targets proposed 
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Given the amount of activity difference shown by the two network around MAPK proteins, 
(the ones related to MEK signalling), it would be of special interest to test that inhibition of 
some MAPK proteins produces a different effect in LNCaP and LNCaP-abl cell lines. CDK 
genes could also be targets of interest given their abundance in the LNCaP-abl network in 
comparison with the LNCaP network.  

 

2.4 Targets based on statistical model of perturbation data 

The use of Boolean models is not the only way one could get a list of therapeutic drug target 
candidates. In fact, there might be interesting targets outside the list of genes covered by the 
logic model. We considered important to briefly explore the use of a data analysis approach 
to target discovery in order to provide a comparison between both. 

For this part, we made use of the LINCS-L1000 dataset (Subramanian et al. 2017). In this 
dataset cell lines (~10 different) are perturbed with different compounds (>20,000) with 
different concentrations and gene expression changes are measured after different elapsed 
times (e.g. after 6, 24 or 96 hours). This results in a very large (>1,000,000) number of 
perturbation signatures collected in the form of transcriptomic data. We found that from these 
perturbation signatures, cell death / toxicity can be effectively predicted. In essence, we 
matched the LINCS-L1000 signatures with data from cell viability screens (e.g. The Cancer 
Therapeutics Response Portal (CTRP) or project Achilles) and trained a linear model to 
predict cell viability from perturbation signature. The models show very nice (Pearson 
correlation 0.5-0.6) cross-validation performance. The reason behind this is that cell death 
leads to a unique signature (changes of apoptosis, cell cycle etc. related genes).  

These models are trained based on a small subset (~20,000 signatures, ~300 compounds) 
of LINCS-L1000 data, so it is possible to predict cell viability for the rest of the data, actually 
using LINCS-L1000 as a “cell viability dataset”. The reason behind this is that in the LINCS-
L1000 data a large number of non-anticancer drugs are used, so there is a chance that we 
can find some interesting hits (i.e. drugs that are not used in cancer but in other conditions, 
and are having cell specific toxicity). We made the cell viability predictions and a 
computational validation by comparing the results with the NCI60 drug screen. We used 
NCI60 screen because it does not only include traditional cancer drugs, and because it also 
involves a large number of compounds (>20,000). The models had a good performance in 
this validation (ROC AUC>0.7 for detecting toxic compounds), comparable with the 
performance of experimentally measured values used from different drug screening 
database (”ground truth”).  

The LINCS-L1000 dataset contains two prostate cancer cell lines (VCAP and PC3), so we 
were able to predict toxicity for the drugs used on these cell lines in the LINCS data. Figure 
12 shows the prediction results. Each point is a compound, X axis is the predicted toxicity for 
VCAP and Y axis is the predicted toxicity for PC3 (toxicity values are provided in arbitrary 
units, with lower values meaning higher cell death). Color code is the highest predicted 
toxicity for the other (non prostate cancer) cell lines in the LINCS dataset. The most 
interesting drugs are the ones that demonstrate selective toxicity for prostate cancer cell 
lines, meaning low score (high toxicity) for either PC3 or VCAP, and high score (low toxicity, 
blue color) for other cell lines. Marked in red are the most interesting candidates for 
experimental validation, given their predicted selective toxicity between these two prostate 
cancer cell lines. These candidate targets proposed for experimental validation are also 
reported in Table 1. 
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Figure 12: Prediction results of the statistical model of perturbation data. Each point is a compound, X 
axis is the predicted toxicity for VCAP and Y axis is the predicted toxicity for PC3. Toxicity values are 

provided in arbitrary units, with lower values meaning higher cell death. Color code is the highest 
predicted toxicity for the other (non prostate cancer) cell lines in the LINCS dataset. The most 

interesting drugs are the ones that demonstrate selective toxicity for prostate cancer cell lines, i.e. low 
score (high toxicity) for either PC3 or VCAP, and high score (low toxicity, blue color) for other cell 
lines. Marked in red are the most interesting candidates for experimental validation, given their 

predicted selective toxicity between these two prostate cancer cell lines. 
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Table 1: List of drug targets and cell lines predicted by the linear statistical model from matching 
transcriptomic cell line perturbation data from LINCS-L1000 dataset. 

Drug Selective 

toxicity in cell 

Note 

CAY-10585 VCAP HIF1A inhibitor, some literature about 

HIF1Ai in prostate cancer 

androstanol VCAP AR agonist, interesting that it kills prostate 

cancer cells, some literature about this 

testosterone-

propionate 

VCAP Same as above 

formestane VCAP Aromatase inhibitor, also related to 

AR/steroids 

ornidazole PC3 Anti-protozoa antibiotic 

meclocycline PC3 Tetracycline antibiotic 
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Chapter 3 Patient-specific drug targets 

Using the same methodology as in previous Chapter 2, sections 2.1 and 2.2, we simulated 
models tailored to patients to be able to identify candidate drugs and combinations of drugs 
for these specific patients (Task 5.5). 

3.1 Use of patient-specific Boolean models 

3.1.1 Generic logical model of prostate cancer 

As before, the generic logical model of prostate cancer delivered in D5.1 was integrated with 
data to have tailored models, delivered in D5.3. The results from this set of models capture 
patient- and cell-line-specific behaviours. 

3.1.2 Data from patients used to tailor the model 

We used data from The Cancer Genome Atlas (TCGA) database (Cancer Genome Atlas 
Research Network 2015), which is the largest public resource for information on cancer 
patients’ data. We obtained the data for all the 487 TCGA prostate-cancer patients for which 
we had CNA, mutations and RNA data available. 

In addition to that, we used proteomic profiles of prostate cancer patient tissue punches. The 
proteome constitutes the majority of cellular machinery that is closet level to the phenotype, 
such as disease or normal. Proteomic data of sufficient depth are still rare. In this project, 
PC39 and PPP1 datasets, provided by UZH and ETH, have been extensively used in 
computational modelling. Both PC39 and PPP1 have profile the proteome of fresh frozen 
prostate tissue, both normal and tumor, upon radical prostatectomy. PC39 dataset is a multi-
level profile of 39 patients from ProCOC cohort, for which exome, transcriptome and 
proteome data are available. PPP1 data profiles 248 patients from the same cohort, resulting 
in 1566 samples available for analysis. PPP1 data, described in D6.1 -D6.3 has been 
acquired 3 years after PC39. Thus, PPP1 dataset serves as validation cohort for results, 
obtained for PC39 data.  

 

3.1.3 Obtaining patient-specific Boolean models 

Following the methodology presented in D5.3, the recipe selected for the prostate TCGA 
patients was using mutations and CNA as node variants and RNA data as initial conditions 
and transition rates. In this case, we used mutation or CNA data as their recipes allowed to 
further discriminate among patients’ behaviours. 

To validate the method, we matched the patients to available clinical data, e.g. Gleason’s 
score. The results (Figure 13) show good correlations between the Gleason’s scores and two 
of the model phenotypes: Apoptosis and Proliferation. We chose to study those for their 
importance in cancer progression and because they are thoroughly described in the model.  
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Figure 13: Associations between simulations and Gleason groups (GG). Distribution histograms of 
Proliferation (a) and Apoptosis (b) scores according to GG; each vignette corresponds to a specific 

sub-cohort with a fixed GG (1, 2, 3 and 4 from left to right). 

 

3.2 Model-based identification of drug targets specific to patients 

As most of the drugs inactivate genes, we looked in each patient for genes that, when 
inhibited, would hamper Proliferation or that promote Apoptosis in the model. Interestingly, 
we found several genes that were found as suitable points of intervention in most of the 487 
patients (HSP90 and SHH were identified in more than 80% of the cases) (Figure 14 and 
Figure 15), but others were specific to only some of the patients (FADD and p21 were 
identified in only 10% of them). 
 
This list of 322 targets was compared to analyses performed using other datasets from the 
present project, such as genes identified as targets in cell lines (from Section 2), PPP1, 
PC39 and the panel of genes used for targeted sequencing in WP1. PPP1 and PC39 are 
datasets used in present project. All of the 26 genes identified as targets in cell lines are 
recovered in present analysis. Then, most of the genes of this gene list were identified as 
being significantly characteristic of PPP1 patients (211 out of 487). Also, 8 genes of this gene 
list were identified as being significantly characteristic of PC39 patients (AR, CYCS, CDH1, 
HSP90AA1, HSP90AB1, HSP90B1, HSPB1, LDHA). Lastly, 18 genes of this gene list were 
also found in the panel of genes used for targeted sequencing in WP1 (AKT1, AR, ERG, 
ATM, ATR, CHEK2, CDH1, EP300, EZH2, FOXA1, MED12, MYC, CDKN1B, TP53, PIK3CA, 
PTEN, RB1, SPOP). 
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Figure 14: Nodes in the Boolean model that hamper Proliferation upon inactivation 

 

 

Figure 15: Nodes in the Boolean model that promote Apoptosis upon inactivation 

  



D5.4 – Lists of possible drug targets (intervention points),  
and of individual and combination of drugs    

PrECISE D5.4 Page 17 of 20   Page 17 of Fehler! Textmarke nicht definiert. 

Chapter 4 Summary and Conclusion 

There are different approaches to drug and target prediction. In this proposal, we have 
leveraged the use of Boolean modelling approaches (e.g. MaBoSS, CellNOpt and 
PHONEMeS) in combination with prostate cancer related network information and public and 
newly generated experimental data. Some Boolean modelling techniques (i.e. CellNOpt and 
PHONEMeS) require of a specific type of data, phosphoproteomic measurements after 
perturbation, which is not widely available at the moment. Some of this data has been 
generated during PrECISE and serves as a proof of concept for this approaches (on top of 
the value they contain by themselves). Future increased availability of this type of data 
promises to lead to better models and insights. Notwithstanding, as shown in this deliverable, 
there are other approaches (i.e. MaBoSS) that provide valuable outputs using other types of 
data already available. In addition, we have considered a statistical modelling approach for 
comparison purposes and increasing the coverage of the predictions outside the domain 
covered by the network models. 

The final list of target genes and drugs to be validated in T6.3 is given in Table 2. As can be 
observed, some of the targets suggested by one model can also be found in another model 
or when analysing independent datasets. This strengthens the interest in testing these 
predictions. Furthermore, the models provide the possibility of inspecting them to better 
understand the predictions and suggest additional experiments if necessary.  

The models and strategies used in this deliverable have been focused in prostate cancer. 
They constitute a pilot case study, but their principles are general and can be applied to any 
tumour type, opening up the possibility to improved therapies in other fields of oncology. 

 

Table 2: List of proposed drug and targets to be tested in validation experiments. 

Target Type Notes 

HSP90AA1  Gene Highlighted by the Boolean model and found in other 
datasets used within PrECISE. 

SPOP Gene Highlighted by the Boolean model and found in other 
datasets used within PrECISE. 

MAX Gene Highlighted by the Boolean model and found in other 
datasets used within PrECISE. 

TERT Gene Highlighted by the Boolean model and found in other 
datasets used within PrECISE. 

NOX1, NOX2, NOX3, NOX4 Gene Highlighted by the Boolean model and found in other 
datasets used within PrECISE. 

AKT Gene Relevant in cancer progression. 

AR Gene Relevant in cancer progression and a target of some of 
the drugs proposed by the statistical model of 
perturbation data. 

EGFR Gene Relevant in cancer progression. 
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Target Type Notes 

PI3K Gene Relevant in cancer progression. 

MEK Gene Highlighted by the use of PHONEMeS in the phospho-
proteomic data because of the MAPK proteins, some of 
which also highlighted by the Boolean model. Also 
relevant in cancer progression. 

CDK1, CDK2, CDK5, CDK7 Gene Highlighted by the use of PHONEMeS in the phospho-
proteomic data. 

CAY-10585 Drug HIF-1 inhibitor. 

androstanol Drug Agonist of the androgen receptor (AR). 

testosterone-propionate Drug Agonist of the androgen receptor (AR). 

formestane Drug Aromatase inhibitor, also related to AR/steroids. 

ornidazole Drug Anti-protozoa antibiotic. 

meclocycline Drug Tetracycline antibiotic. 
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Chapter 5 List of Abbreviations  

CNA Copy number alterations 

AR androgen receptor 

GnRH gonadotrophin-releasing hormone 

WT Wild type 

PCA Principal Component Analysis 

EGF Epidermal Growth Factor 

ROC Receiver-Operator Curve 

AUC Area Under the Curve 

 

List of cell lines used in this deliverable 

Cell line Molecular profile source 

LNCaP (LNCaP-Clone-
FGC) 

GDSC, Phosphoproteomic profile by ETH and UZH 

LNCaP-abl Phosphoproteomic profile by ETH and UZH 

DU-145 GDSC 

PC3 GDSC, LINCS-L1000 

VCAP LINCS-L1000 

BPH-1 GDSC 

 



D5.4 – Lists of possible drug targets (intervention points),  
and of individual and combination of drugs    

PrECISE D5.4 Page 20 of 20   Page 20 of Fehler! Textmarke nicht definiert. 

Chapter 6 Bibliography 

[1] Cancer Genome Atlas Research Network. 2015. “The Molecular Taxonomy of Primary 
Prostate Cancer.” Cell 163 (4): 1011–25. 

[2] Stoll, Gautier, Barthélémy Caron, Eric Viara, Aurélien Dugourd, Andrei Zinovyev, Aurélien 
Naldi, Guido Kroemer, Emmanuel Barillot, and Laurence Calzone. 2017. “MaBoSS 2.0: An 
Environment for Stochastic Boolean Modeling.” Bioinformatics  33 (14): 2226–28. 

[3] Subramanian, Aravind, Rajiv Narayan, Steven M. Corsello, David D. Peck, Ted E. Natoli, 
Xiaodong Lu, Joshua Gould, et al. 2017. “A Next Generation Connectivity Map: L1000 
Platform and the First 1,000,000 Profiles.” Cell 171 (6): 1437–52.e17. 

[4] Terfve, Camille, Thomas Cokelaer, David Henriques, Aidan MacNamara, Emanuel 
Goncalves, Melody K. Morris, Martijn van Iersel, Douglas A. Lauffenburger, and Julio Saez-
Rodriguez. 2012. “CellNOptR: A Flexible Toolkit to Train Protein Signaling Networks to Data 
Using Multiple Logic Formalisms.” BMC Systems Biology 6 (October): 133. 

[5] Terfve, Camille D. A., Edmund H. Wilkes, Pedro Casado, Pedro R. Cutillas, and Julio 
Saez-Rodriguez. 2015. “Large-Scale Models of Signal Propagation in Human Cells Derived 
from Discovery Phosphoproteomic Data.” Nature Communications 6 (September): 8033. 

[6] Türei, Dénes, Tamás Korcsmáros, and Julio Saez-Rodriguez. 2016. “OmniPath: 
Guidelines and Gateway for Literature-Curated Signaling Pathway Resources.” Nature 
Methods 13 (12): 966–67. 

[7] Yang, Wanjuan, Jorge Soares, Patricia Greninger, Elena J. Edelman, Howard Lightfoot, 
Simon Forbes, Nidhi Bindal, et al. 2013. “Genomics of Drug Sensitivity in Cancer (GDSC): A 
Resource for Therapeutic Biomarker Discovery in Cancer Cells.” Nucleic Acids Research 41 
(Database issue): D955–61. 

 

  


	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Cell-line-specific drug targets
	2.1 Use of cell-line-specific Boolean models
	2.1.1 Generic logical model of prostate cancer
	2.1.2 Public transcriptomic cell line data used to tailor the model
	2.1.3 Obtaining cell-line-specific Boolean models

	2.2 Model-based identification of drug targets specific to cell-lines
	2.2.1 List of targets proposed

	2.3 Phosphoproteomic profile prostate cancer cell lines
	2.3.1 List of targets proposed

	2.4 Targets based on statistical model of perturbation data

	Chapter 3 Patient-specific drug targets
	3.1 Use of patient-specific Boolean models
	3.1.1 Generic logical model of prostate cancer
	3.1.2 Data from patients used to tailor the model
	3.1.3 Obtaining patient-specific Boolean models

	3.2 Model-based identification of drug targets specific to patients

	Chapter 4 Summary and Conclusion
	Chapter 5 List of Abbreviations
	Chapter 6 Bibliography

